Rate of convergence in singular perturbations
Annales de l'Institut Fourier, Volume 18 (1968) no. 2, pp. 135-191.

Soit DR n un domaine et ε un paramètre réel positif. Considérons les deux problèmes aux limites sur D, (ε𝒰+w ε =f et u=f, où 𝒰 et sont des opérateurs différentiels elliptiques et où le degré de 𝒰 est supérieur au degré de .

En utilisant l’interpolation quadratique entre espaces de Hilbert, on étudie les problèmes suivants :

1) Déterminer les normes pour lesquelles w ε converge vers u ;

2) Estimer la rapidité de convergence de w ε vers u, pour ces normes.

@article{AIF_1968__18_2_135_0,
     author = {Greenlee, Wilfred M.},
     title = {Rate of convergence in singular perturbations},
     journal = {Annales de l'Institut Fourier},
     pages = {135--191},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     number = {2},
     year = {1968},
     doi = {10.5802/aif.296},
     zbl = {0175.40006},
     mrnumber = {39 #3133},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.296/}
}
TY  - JOUR
AU  - Greenlee, Wilfred M.
TI  - Rate of convergence in singular perturbations
JO  - Annales de l'Institut Fourier
PY  - 1968
SP  - 135
EP  - 191
VL  - 18
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.296/
DO  - 10.5802/aif.296
LA  - en
ID  - AIF_1968__18_2_135_0
ER  - 
%0 Journal Article
%A Greenlee, Wilfred M.
%T Rate of convergence in singular perturbations
%J Annales de l'Institut Fourier
%D 1968
%P 135-191
%V 18
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.296/
%R 10.5802/aif.296
%G en
%F AIF_1968__18_2_135_0
Greenlee, Wilfred M. Rate of convergence in singular perturbations. Annales de l'Institut Fourier, Volume 18 (1968) no. 2, pp. 135-191. doi : 10.5802/aif.296. https://aif.centre-mersenne.org/articles/10.5802/aif.296/

[1] R. Adams, N. Aronszajn, and M. Hanna, Theory of Bessel potentials, Part. III, In preparation as a Univ. of Kansas Tech. Rep.

[2] R. Adams, N. Aronszajn and K. T. Smith, Theory of Bessel potentials, Part. II, Revised Version, Univ. of Kansas Tech. Rep. 8 (new series), 1964. Ann. Inst. Fourier (Grenoble, 17, 2 (1967)). | Numdam | Zbl

[3] S. Agmon, Lectures on elliptic boundary value problems. Van Nostrand, 1965. | MR | Zbl

[4] N. Aronszajn, Potentiels Besseliens, Ann. Inst. Fourier (Grenoble) 15 (1965), 43-58. | Numdam | MR | Zbl

[5] N. Aronszajn and K. T. Smith, Functional spaces and functiona completion, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 125-1851. | Numdam | MR | Zbl

[6] N. Aronszajn and K. T. Smith, Theory of Bessel potentials, I. Ann Inst. Fourier (Grenoble), 11 (1961), 385-475. | Numdam | MR | Zbl

[7] P. Grisvard, Caractérisation de quelques espaces d'interpolation. Arch. Rational Mech. Anal., 25 (1967), 40-63. | MR | Zbl

[8] D. Huet, Phénomènes de perturbation singulière dans les problèmes aux limites. Ann. Inst. Fourier (Grenoble), 10 (1960), 61-150. | Numdam | MR | Zbl

[9] D. Huet, Perturbations singulières. C.R. Acad. Sci. Paris, 259 (1964), 4213-4215. | MR | Zbl

[10] E. Jahnke and F. Emde, Tables of functions with formulae and curves, Dover, 1943.

[11] J. Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., 14 (89) (1964), 386-393 (In Russian). | MR | Zbl

[12] T. Kato, Quadratic forms in Hilbert spaces and asymptotic perturbation series, Dep't. of Math., Univ. of Calif., Berkeley, (1955).

[13] P. D. Lax, On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl Math., 8 (1955), 615-633. | MR | Zbl

[14] P. D. Lax and A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations, pp. 167-190, Ann. of Math. Studies, no. 33, Princeton Univ. Press, (1954). | MR | Zbl

[15] J. L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine (N. S.), 2 (50), (1958), 419-432. | MR | Zbl

[16] J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, 1961. | Zbl

[17] J. L. Lions, and E. Magenes, Problemi ai limiti non omogenei, I. Ann. Scuola Norm. Sup. Pisa (3), 14 (1960), 269-308. | Numdam | MR | Zbl

[18] J. L. Lions, and E. Magenes, Problemi ai limiti non omogenei. III. Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 41-103. | Numdam | Zbl

[19] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes. IV. Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 311-326. | Numdam | MR | Zbl

[20] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes, VI, J. Analyse Math., 11 (1963), 165-188. | MR | Zbl

[21] L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math., 8 (1955), 649-675. | MR | Zbl

[22] B. A. Ton, Elliptic boundary problems with a small parameter, Jour. Math. Anal. Appl., 14 (1966), 341-358. | MR | Zbl

[1′] K. Friedrichs, Asymptotic phenomena in mathematical physics Bull. Amer. Math. Soc., 61 (1955), 485-504. | MR | Zbl

[2′] T. Kato, Perturbation theory of semi-bounded operators, Math. Annalen, 125 (1953), 435-447. | MR | Zbl

[3′] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966. | MR | Zbl

[4′] J. Moser, Singular perturbation of eigenvalue problems for linear differential equations of even order, Comm. Pure and Appl. Math., 8 (1955), 251-278. | MR | Zbl

[5′] Rayleigh, Lord, Theory of Sound, Vol. I and II, Dover, 1945. | MR | Zbl

[6′] B. A. Ton, Singular perturbations of non-linear elliptic and parabolic variational boundary-value problems, Can. J. Math., 18 (1966), 861-872. | MR | Zbl

[7′] B. A. Ton, Singular perturbations and non-linear parabolic boundary value problems, Jour. Math. Anal. Appl., 17 (1967), 248-261. | MR | Zbl

[8′] M. I. Višik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small paramater, Uspehi Mat. Nauk. (N.S.), 12 (1957), no. 5 (77), 3-122 ; Am. Math. Soc. Trans. Ser., 2, 20 (1962), 239-364. | Zbl

[9′] W. Wasow, Asymptotic expansions for ordinary differential equations, (Interscience), Wiley, 1966.

Cited by Sources: