We study an inverse scattering problem for the discrete Schrödinger operator on the square lattice , , with compactly supported potential. We show that the potential is uniquely reconstructed from a scattering matrix for a fixed energy.
Nous étudions un problème inverse de diffusion pour l’opérateur de Schrödinger discret sur un réseau carré , , avec un potentiel à support compact. Nous montrons que le potentiel est uniquement determiné en utilisant la matrice de diffusion à énergie fixée.
Revised:
Accepted:
Published online:
Classification: 81U40, 47A40, 39A12
Keywords: Schrödinger operator, Scattering theory, Inverse Problem
@article{AIF_2015__65_3_1153_0, author = {Isozaki, Hiroshi and Morioka, Hisashi}, title = {Inverse scattering at a fixed energy for {Discrete} {Schr\"odinger} {Operators} on the square lattice}, journal = {Annales de l'Institut Fourier}, pages = {1153--1200}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2954}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2954/} }
TY - JOUR TI - Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice JO - Annales de l'Institut Fourier PY - 2015 DA - 2015/// SP - 1153 EP - 1200 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2954/ UR - https://doi.org/10.5802/aif.2954 DO - 10.5802/aif.2954 LA - en ID - AIF_2015__65_3_1153_0 ER -
%0 Journal Article %T Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice %J Annales de l'Institut Fourier %D 2015 %P 1153-1200 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U https://doi.org/10.5802/aif.2954 %R 10.5802/aif.2954 %G en %F AIF_2015__65_3_1153_0
Isozaki, Hiroshi; Morioka, Hisashi. Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 1153-1200. doi : 10.5802/aif.2954. https://aif.centre-mersenne.org/articles/10.5802/aif.2954/
[1] Asymptotic properties of solutions of differential equations with simple characteristics, J. d’Anal. Math., Tome 30 (1976), pp. 1-38 | Article | MR: 466902 | Zbl: 0335.35013
[2] Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl., Tome 16 (2008), pp. 19-34 | Article | MR: 2387648 | Zbl: 1142.30018
[3] Finding the conductors in circular networks from boundary measurements, RAIRO Modél. Math. Anal. Numél., Tome 28 (1994), pp. 781-814 | Numdam | MR: 1309415 | Zbl: 0820.94028
[4] The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., Tome 51 (1991), pp. 1011-1029 | Article | MR: 1117430 | Zbl: 0744.35064
[5] Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., Tome 284 (1984), pp. 787-794 | Article | MR: 743744 | Zbl: 0512.39001
[6] The direct and the inverse scattering problem for a partial difference equation, Soviet Math. Doklady, Tome 7 (1966), pp. 193-197 | MR: 198301 | Zbl: 0161.07404
[7] The Calderón problem with partial Cauchy data in two dimensions, J. Amer. Math. Soc., Tome 23 (2010), pp. 655-691 | Article | MR: 2629983 | Zbl: 1201.35183
[8] Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc., Tome 347 (1995), pp. 3375-3390 | Article | MR: 1311909 | Zbl: 0849.35148
[9] Inverse spectral theory, Topics In The Theory of Schrödinger Operators (Araki, H.; Ezawa, H., eds.), World Scientific, 2003, pp. 93-143 | MR: 2117108 | Zbl: 1050.35507
[10] Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, Tome 13 (2012), pp. 751-788 | Article | MR: 2913620 | Zbl: 1250.81124
[11] A Rellich type theorem for discrete Schrödinger operators, Inverse Problems and Imaging, Tome 8 (2014), pp. 475-489 | Article | MR: 3209307
[12] The -equation in the multi-dimensional inverse scattering problem, Russian Math. Surveys, Tome 42 (1987), pp. 109-180 | Article | MR: 896879 | Zbl: 0674.35085
[13] Fourier transforms of surface-carried measures and differentiablity of surface averages, Bull, Amer. Math. Soc., Tome 69 (1963), pp. 766-770 | Article | MR: 155146 | Zbl: 0143.34701
[14] Comportement des solutions de quelques problèmes mixtes pour certains systèmes huperboliques symétriques à coefficients constants, Publ. RIMS, Kyoto Univ. Ser. A, Tome 4 (1968), pp. 309-359 | Article | MR: 247254 | Zbl: 0205.10101
[15] Reconstruction from boundary measurements, Ann. of Math., Tome 128 (1988), pp. 531-576 | Article | MR: 970610 | Zbl: 0675.35084
[16] Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., Tome 143 (1996), pp. 71-96 | Article | MR: 1370758 | Zbl: 0857.35135
[17] On imaging obstacles inside inhomogeneous media, J. Funct. Anal., Tome 252 (2007), pp. 490-516 | Article | MR: 2360925 | Zbl: 1131.78004
[18] A multidimensional inverse spectral problem for the equation , Funct. Anal. Appl., Tome 22 (1988), pp. 263-272 | Article | MR: 976992 | Zbl: 0689.35098
[19] Discrete inverse problems for Schrödinger and resistor networks, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, (2000) (www.math.washington.edu/~reu/papers/2000/oberlin/oberlin_schrodinger.pdf)
[20] Über das asymptotische Verhalten der Lösungen von in unendlichen Gebieten, Jahresber. Deitch. Math. Verein., Tome 53 (1943), pp. 57-65 | MR: 17816 | Zbl: 0028.16401
[21] Radiation conditions for the difference Schrödinger operators, Applicable Analysis, Tome 80 (2001), pp. 525-556 | Article | MR: 1914696 | Zbl: 1026.47025
[22] A global uniqueness theorem for an inverse boundary value problem, Ann. Math., Tome 125 (1987), pp. 153-169 | Article | MR: 873380 | Zbl: 0625.35078
Cited by Sources: