We establish the existence and uniqueness of twisted exterior and symmetric square -factors in positive characteristic by studying the Siegel Levi case of generalized spinor groups. The corresponding theory in characteristic zero is due to Shahidi. In addition, in characteristic we prove that these twisted local factors are compatible with the local Langlands correspondence. As a consequence, still in characteristic , we obtain a proof of the stability property of -factors under twists by highly ramified characters. Next we use the results on the compatibility of the Langlands-Shahidi local coefficients with the Deligne-Kazhdan theory over close local fields to show that the twisted symmetric and exterior square -factors, -functions and -factors are preserved. Furthermore, we obtain a formula for Plancherel measures in terms of local factors and we also show that they are preserved over close local fields.
On établit l’existence et l’unicité des facteurs des carrés extérieurs et symétriques tordus en caractéristique positive en étudiant le sous groupe de Siegel Lévi d’un groupe spinoriel généralisé. La théorie en caractéristique zéro est due à Shahidi. En caractéristique , on prouve que les facteurs tordus sont compatibles avec la correspondance de Langlands. Comme conséquence, on prouve une propriété de stabilité des facteurs tordus par un caractère assez ramifié. De plus, on utilise les résultats de compatibilité des coefficients locaux de Langlands-Shahidi avec la philosophie de Deligne-Kazhdan sur les corps locaux proches et on prouve que les facteurs , fonctions et facteurs des carrés extérieur et symétrique tordus sont préservés. Finalement, on conclut avec une formule en termes de facteurs pour les mesures de Plancherel et on prouve qu’elles sont préservées sur les corps locaux proches.
Keywords: L-functions, local Langlands correspondence, close local fields
Mot clés : Fonctions L, correspondance de Langlands locale, corps locaux proches
@article{AIF_2015__65_3_1105_0, author = {Ganapathy, Radhika and Lomel{\'\i}, Luis}, title = {On twisted exterior and symmetric square $\gamma $-factors}, journal = {Annales de l'Institut Fourier}, pages = {1105--1132}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2952}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2952/} }
TY - JOUR AU - Ganapathy, Radhika AU - Lomelí, Luis TI - On twisted exterior and symmetric square $\gamma $-factors JO - Annales de l'Institut Fourier PY - 2015 SP - 1105 EP - 1132 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2952/ DO - 10.5802/aif.2952 LA - en ID - AIF_2015__65_3_1105_0 ER -
%0 Journal Article %A Ganapathy, Radhika %A Lomelí, Luis %T On twisted exterior and symmetric square $\gamma $-factors %J Annales de l'Institut Fourier %D 2015 %P 1105-1132 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2952/ %R 10.5802/aif.2952 %G en %F AIF_2015__65_3_1105_0
Ganapathy, Radhika; Lomelí, Luis. On twisted exterior and symmetric square $\gamma $-factors. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 1105-1132. doi : 10.5802/aif.2952. https://aif.centre-mersenne.org/articles/10.5802/aif.2952/
[1] Class field theory, AMS Chelsea Publishing, Providence, RI, 2009, pp. viii+194 (Reprinted with corrections from the 1967 original) | MR | Zbl
[2] Local -functions for split spinor groups, Canad. J. Math., Volume 54 (2002) no. 4, pp. 673-693 | DOI | MR | Zbl
[3] Generic transfer for general spin groups, Duke Math. J., Volume 132 (2006) no. 1, pp. 137-190 | DOI | MR | Zbl
[4] The local Langlands correspondence for inner forms of (http://arxiv.org/abs/1305.2638)
[5] An upper bound on conductors for pairs, J. Number Theory, Volume 65 (1997) no. 2, pp. 183-196 | DOI | MR | Zbl
[6] Stability of -factors for quasi-split groups, J. Inst. Math. Jussieu, Volume 7 (2008) no. 1, pp. 27-66 | DOI | MR | Zbl
[7] Local Langlands correspondence for and the exterior and symmetric square -factors (http://arxiv.org/abs/1412.1448)
[8] Reductive group schemes (SGA3 summer school)
[9] Les corps locaux de caractéristique , limites de corps locaux de caractéristique , Representations of reductive groups over a local field (Travaux en Cours), Hermann, Paris, 1984, pp. 119-157 | MR | Zbl
[10] Sur la variation, par torsion, des constantes locales d’équations fonctionnelles de fonctions , Invent. Math., Volume 64 (1981) no. 1, pp. 89-118 | DOI | MR | Zbl
[11] The local Langlands conjecture for , Ann. of Math. (2), Volume 173 (2011) no. 3, pp. 1841-1882 | DOI | MR | Zbl
[12] The local Langlands correspondence for over local function fields (http://arxiv.org/abs/1305.6088)
[13] The Deligne-Kazhdan philosophy and the Langlands conjectures in positive characteristic, ProQuest LLC, Ann Arbor, MI, 2012, pp. 89 Thesis (Ph.D.)–Purdue University | MR
[14] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, 151, Princeton University Press, Princeton, NJ, 2001, pp. viii+276 (With an appendix by Vladimir G. Berkovich) | MR | Zbl
[15] Une preuve simple des conjectures de Langlands pour sur un corps -adique, Invent. Math., Volume 139 (2000) no. 2, pp. 439-455 | DOI | MR | Zbl
[16] Une caractérisation de la correspondance de Langlands locale pour , Bull. Soc. Math. France, Volume 130 (2002) no. 4, pp. 587-602 | Numdam | MR | Zbl
[17] Correspondance de Langlands et fonctions des carrés extérieur et symétrique, Int. Math. Res. Not. IMRN (2010) no. 4, pp. 633-673 | DOI | MR | Zbl
[18] Local-to-global extensions for in non-zero characteristic: a characterization of and , Amer. J. Math., Volume 133 (2011) no. 1, pp. 187-196 | DOI | MR | Zbl
[19] Characterization of -factors: the Asai case, Int. Math. Res. Not. IMRN (2013) no. 17, pp. 4085-4099 | MR
[20] Uniqueness of Rankin-Selberg products, J. Number Theory, Volume 133 (2013) no. 12, pp. 4024-4035 | DOI | MR
[21] Harish-Chandra homomorphisms for -adic groups, CBMS Regional Conference Series in Mathematics, 59, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985, pp. xi+76 (With the collaboration of Allen Moy) | MR | Zbl
[22] Representations of groups over close local fields, J. Analyse Math., Volume 47 (1986), pp. 175-179 | DOI | MR | Zbl
[23] Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 294, Springer-Verlag, Berlin, 1991, pp. xii+524 (With a foreword by I. Bertuccioni) | DOI | MR | Zbl
[24] The book of involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998, pp. xxii+593 (With a preface in French by J. Tits) | MR | Zbl
[25] Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002) no. 1, pp. 1-241 | DOI | MR | Zbl
[26] -elliptic sheaves and the Langlands correspondence, Invent. Math., Volume 113 (1993) no. 2, pp. 217-338 | DOI | MR | Zbl
[27] Représentations génériques de et corps locaux proches, J. Algebra, Volume 236 (2001) no. 2, pp. 549-574 | DOI | MR | Zbl
[28] On automorphic -functions in positive characteristic (http://arxiv.org/abs/1201.1585)
[29] Functoriality for the classical groups over function fields, Int. Math. Res. Not. IMRN (2009) no. 22, pp. 4271-4335 | DOI | MR | Zbl
[30] Unrefined minimal -types for -adic groups, Invent. Math., Volume 116 (1994) no. 1-3, pp. 393-408 | DOI | MR | Zbl
[31] Jacquet functors and unrefined minimal -types, Comment. Math. Helv., Volume 71 (1996) no. 1, pp. 98-121 | DOI | MR | Zbl
[32] Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979, pp. viii+241 (Translated from the French by Marvin Jay Greenberg) | MR | Zbl
[33] On certain -functions, Amer. J. Math., Volume 103 (1981) no. 2, pp. 297-355 | DOI | MR | Zbl
[34] Local coefficients and normalization of intertwining operators for , Compositio Math., Volume 48 (1983) no. 3, pp. 271-295 | Numdam | MR | Zbl
[35] On the Ramanujan conjecture and finiteness of poles for certain -functions, Ann. of Math. (2), Volume 127 (1988) no. 3, pp. 547-584 | DOI | MR | Zbl
[36] A proof of Langlands’ conjecture on Plancherel measures; complementary series for -adic groups, Ann. of Math. (2), Volume 132 (1990) no. 2, pp. 273-330 | DOI | MR | Zbl
[37] On non-vanishing of twisted symmetric and exterior square -functions for , Pacific J. Math. (1997) no. Special Issue, pp. 311-322 (Olga Taussky-Todd: in memoriam) | DOI | MR | Zbl
[38] Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26 | MR | Zbl
[39] Bruhat-Tits theory and buildings, Ottawa lectures on admissible representations of reductive -adic groups (Fields Inst. Monogr.), Volume 26, Amer. Math. Soc., Providence, RI, 2009, pp. 53-77 | MR | Zbl
Cited by Sources: