Finiteness of crystalline cohomology of higher level
Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 975-1004.

We prove the finiteness of crystalline cohomology of higher level. An important ingredient is a “higher de Rham complex” that satisfies a kind of Poincaré lemma.

Nous prouvons la finitude de la cohomologie cristalline de niveau fini. Un ingrédient important est un “complexe de de Rham supérieur” qui satisfait un analogue du lemme de Poincaré.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2949
Classification: 14F30
Keywords: crystalline cohomology of higher level, Poincaré lemma
@article{AIF_2015__65_3_975_0,
     author = {Miyatani, Kazuaki},
     title = {Finiteness of crystalline cohomology of higher level},
     journal = {Annales de l'Institut Fourier},
     pages = {975--1004},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {3},
     year = {2015},
     doi = {10.5802/aif.2949},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2949/}
}
TY  - JOUR
TI  - Finiteness of crystalline cohomology of higher level
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 975
EP  - 1004
VL  - 65
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2949/
UR  - https://doi.org/10.5802/aif.2949
DO  - 10.5802/aif.2949
LA  - en
ID  - AIF_2015__65_3_975_0
ER  - 
%0 Journal Article
%T Finiteness of crystalline cohomology of higher level
%J Annales de l'Institut Fourier
%D 2015
%P 975-1004
%V 65
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2949
%R 10.5802/aif.2949
%G en
%F AIF_2015__65_3_975_0
Miyatani, Kazuaki. Finiteness of crystalline cohomology of higher level. Annales de l'Institut Fourier, Volume 65 (2015) no. 3, pp. 975-1004. doi : 10.5802/aif.2949. https://aif.centre-mersenne.org/articles/10.5802/aif.2949/

[1] Artin, Michael; Grothendieck, Alexander; Verdier, Jean-Louis Théorie de Topos et Cohomologie Étale des Schémas I, II, III, Lecture Notes in Math., Tome 269, 270, 305, Springer-Verlag, 1971

[2] Berthelot, Pierre Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974, 604 pages | MR: 384804 | Zbl: 0298.14012

[3] Berthelot, Pierre Letter to Illusie, 1990

[4] Berthelot, Pierre 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), Tome 29 (1996) no. 2, pp. 185-272 | Numdam | MR: 1373933 | Zbl: 0886.14004

[5] Berthelot, Pierre 𝒟-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) (2000) no. 81, vi+136 pages | Numdam | Zbl: 0948.14017

[6] Berthelot, Pierre Letter to Abe and the author, 2010

[7] Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Math., Tome 225, Springer-Verlag, 1971

[8] Berthelot, Pierre; Ogus, Arthur Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978, vi+243 pages | MR: 491705 | Zbl: 0383.14010

[9] Le Stum, Bernard; Quirós, Adolfo Transversal crystals of finite level, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 1, pp. 69-100 | Article | Numdam | MR: 1437179 | Zbl: 0883.14006

[10] Le Stum, Bernard; Quirós, Adolfo The exact Poincaré lemma in crystalline cohomology of higher level, J. Algebra, Tome 240 (2001) no. 2, pp. 559-588 | Article | MR: 1841347 | Zbl: 1064.14015

Cited by Sources: