We show that Yau’s conjecture on the inequalities for -th Griffiths number and -th Hironaka number does not hold for isolated rigid Gorenstein singularities of dimension greater than 2. But his conjecture on the inequality for -th Griffiths number is true for irregular singularities.
Nous montrons que la conjecture de Yau sur les inégalités concernant le -ième nombre de Griffiths et le -ième nombre de Hironaka n’est pas vraie en général pour les singularités de Gorenstein isolées rigides de dimension supérieure à 2. Cependant, la première conjecture sur les inégalités concernant le -ième nombre de Griffiths est vraie pour les singularités irrégulières.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2935
Classification: 32S05, 14B05
Keywords: Griffiths number, Hironaka number, rigid Gorenstein singularity, irregular singularity
@article{AIF_2015__65_1_389_0, author = {Du, Rong and Gao, Yun}, title = {On the {Griffiths} numbers for higher dimensional singularities}, journal = {Annales de l'Institut Fourier}, pages = {389--395}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2935}, zbl = {06496544}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2935/} }
TY - JOUR TI - On the Griffiths numbers for higher dimensional singularities JO - Annales de l'Institut Fourier PY - 2015 DA - 2015/// SP - 389 EP - 395 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2935/ UR - https://zbmath.org/?q=an%3A06496544 UR - https://doi.org/10.5802/aif.2935 DO - 10.5802/aif.2935 LA - en ID - AIF_2015__65_1_389_0 ER -
Du, Rong; Gao, Yun. On the Griffiths numbers for higher dimensional singularities. Annales de l'Institut Fourier, Volume 65 (2015) no. 1, pp. 389-395. doi : 10.5802/aif.2935. https://aif.centre-mersenne.org/articles/10.5802/aif.2935/
[1] Four-dimensional terminal Gorenstein quotient singularities, Mat. Zametki, Tome 73 (2003) no. 6, pp. 813-820 | Article | MR: 2010650 | Zbl: 1059.14003
[2] Variations on a theorem of Abel, Invent. Math., Tome 35 (1976), pp. 321-390 | Article | MR: 435074 | Zbl: 0339.14003
[3] Theory and applications of finite groups, Dover Publications, Inc., New York, 1961, xvii+390 pages | MR: 123600 | Zbl: 0098.25103
[4] Rigidity of quotient singularities, Invent. Math., Tome 14 (1971), pp. 17-26 | Article | MR: 292830 | Zbl: 0232.14005
[5] Analytic sheaves of local cohomology, Trans. Amer. Math. Soc., Tome 148 (1970), pp. 347-366 | Article | MR: 257403 | Zbl: 0195.36802
[6] Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg, Tome 55 (1985), pp. 97-110 | Article | MR: 831521 | Zbl: 0584.32018
[7] Existence of -integrable holomorphic forms and lower estimates of , Duke Math. J., Tome 48 (1981) no. 3, pp. 537-547 http://projecteuclid.org/euclid.dmj/1077314780 | Article | MR: 630584 | Zbl: 0474.14020
[8] Various numerical invariants for isolated singularities, Amer. J. Math., Tome 104 (1982) no. 5, pp. 1063-1100 | Article | MR: 675310 | Zbl: 0523.14002
[9] Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., Tome 105 (1993) no. 505, viii+88 pages | Article | MR: 1169227 | Zbl: 0799.14001
Cited by Sources: