Les fonctions harmoniques en deux variables sont exactement celles qui admettent une fonction conjuguée, à savoir une fonction dont le gradient a la même longueur et est partout orthogonal au gradient de la fonction d’origine. Nous montrons qu’il existe des équations aux dérivées partielles qui contrôlent également les fonctions de trois variables qui admettent une fonction conjuguée.
Harmonic functions of two variables are exactly those that admit a conjugate, namely a function whose gradient has the same length and is everywhere orthogonal to the gradient of the original function. We show that there are also partial differential equations controlling the functions of three variables that admit a conjugate.
Keywords: conjugate function, conformal invariant, partial differential inequality, partial differential equation, 3-harmonic function, conformal Killing field
Mot clés : fonction conjuguée, invariant conforme, inégalité aux dérivées partielles, équation aux dérivées partielles, fonction 3-harmonique, champ de Killing conforme
Baird, Paul 1 ; Eastwood, Michael 2
@article{AIF_2015__65_1_277_0, author = {Baird, Paul and Eastwood, Michael}, title = {On {Functions} with a {Conjugate}}, journal = {Annales de l'Institut Fourier}, pages = {277--314}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2931}, zbl = {06496540}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2931/} }
TY - JOUR AU - Baird, Paul AU - Eastwood, Michael TI - On Functions with a Conjugate JO - Annales de l'Institut Fourier PY - 2015 SP - 277 EP - 314 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2931/ DO - 10.5802/aif.2931 LA - en ID - AIF_2015__65_1_277_0 ER -
%0 Journal Article %A Baird, Paul %A Eastwood, Michael %T On Functions with a Conjugate %J Annales de l'Institut Fourier %D 2015 %P 277-314 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2931/ %R 10.5802/aif.2931 %G en %F AIF_2015__65_1_277_0
Baird, Paul; Eastwood, Michael. On Functions with a Conjugate. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 277-314. doi : 10.5802/aif.2931. https://aif.centre-mersenne.org/articles/10.5802/aif.2931/
[1] Polynômes semi-conformes et morphismes harmoniques, Math. Z., Volume 231 (1999) no. 3, pp. 589-604 | DOI | MR | Zbl
[2] Singularities of semiconformal mappings, RIMS Kokyuroku, Volume 1610 (2008), pp. 1-10
[3] Conjugate functions and semiconformal mappings, Differential geometry and its applications, Matfyzpress, Prague, 2005, pp. 479-486 | MR | Zbl
[4] CR geometry and conformal foliations, Ann. Global Anal. Geom., Volume 44 (2013) no. 1, pp. 73-90 | DOI | MR | Zbl
[5] Harmonic morphisms on heaven spaces, Bull. Lond. Math. Soc., Volume 41 (2009) no. 2, pp. 198-204 | DOI | MR | Zbl
[6] Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003, pp. xvi+520 | DOI | MR | Zbl
[7] -harmonic equation and quasiregular mappings, Partial differential equations (Warsaw, 1984) (Banach Center Publ.), Volume 19, PWN, Warsaw, 1987, pp. 25-38 | MR | Zbl
[8] Higher symmetries of the Laplacian, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1645-1665 | DOI | MR | Zbl
[9] Invariants of conformal densities, Duke Math. J., Volume 63 (1991) no. 3, pp. 633-671 | DOI | MR | Zbl
[10] Mappings minimizing the norm of the gradient, Comm. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555-588 | DOI | MR | Zbl
[11] On -harmonic morphisms, Differential Geom. Appl., Volume 12 (2000) no. 3, pp. 219-229 | DOI | MR | Zbl
[12] Construction of conjugate functions, Ann. Global Anal. Geom., Volume 37 (2010) no. 4, pp. 321-326 | DOI | MR | Zbl
[13] Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984, pp. x+458 (Two-spinor calculus and relativistic fields) | DOI | MR | Zbl
[14] Conformal tensors., Proc. R. Soc. Lond., Ser. A, Volume 304 (1968), pp. 113-122 | DOI | Zbl
[15] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939, pp. xii+302 | MR | Zbl
Cité par Sources :