Geometry and Spectrum in 2D Magnetic Wells
[Géométrie et spectre pour les puits magnétiques en dimension 2]
Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 137-169.

Cet article est consacré à la mécanique classique et l’analyse spectrale d’un hamiltonien purement magnétique dans 2. On démontre que la dynamique et la théorie spectrale semi-classique peuvent être traitées par une forme normale de Birkhoff, et ainsi réduites à l’étude d’une famille d’hamiltoniens à un degré de liberté. Corollairement, on obtient une extension de résultats récents de Helffer et Kordyukov à de plus hautes énergies.

This paper is devoted to the classical mechanics and spectral analysis of a pure magnetic Hamiltonian in 2. It is established that both the dynamics and the semiclassical spectral theory can be treated through a Birkhoff normal form and reduced to the study of a family of one dimensional Hamiltonians. As a corollary, recent results by Helffer-Kordyukov are extended to higher energies.

DOI : 10.5802/aif.2927
Classification : 81Q20, 35Pxx, 35S05, 70Hxx, 37Jxx
Keywords: magnetic field, normal form, spectral theory, semiclassical limit, Hamiltonian flow, microlocal analysis
Mots-clés : champ magnétique, forme normale, théorie spectrale, limite semi-classique, flot hamiltonien, analyse microlocale

Raymond, Nicolas 1 ; Vũ Ngọc, San 1

1 Université de Rennes 1 IRMAR (UMR 6625) Campus de Beaulieu 35042 Rennes Cedex (France)
@article{AIF_2015__65_1_137_0,
     author = {Raymond, Nicolas and V\~{u} Ngọc, San},
     title = {Geometry and {Spectrum}  in {2D} {Magnetic} {Wells}},
     journal = {Annales de l'Institut Fourier},
     pages = {137--169},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.5802/aif.2927},
     zbl = {1327.81207},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2927/}
}
TY  - JOUR
AU  - Raymond, Nicolas
AU  - Vũ Ngọc, San
TI  - Geometry and Spectrum  in 2D Magnetic Wells
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 137
EP  - 169
VL  - 65
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2927/
DO  - 10.5802/aif.2927
LA  - en
ID  - AIF_2015__65_1_137_0
ER  - 
%0 Journal Article
%A Raymond, Nicolas
%A Vũ Ngọc, San
%T Geometry and Spectrum  in 2D Magnetic Wells
%J Annales de l'Institut Fourier
%D 2015
%P 137-169
%V 65
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2927/
%R 10.5802/aif.2927
%G en
%F AIF_2015__65_1_137_0
Raymond, Nicolas; Vũ Ngọc, San. Geometry and Spectrum  in 2D Magnetic Wells. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 137-169. doi : 10.5802/aif.2927. https://aif.centre-mersenne.org/articles/10.5802/aif.2927/

[1] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ, 1982, pp. 118 | MR | Zbl

[2] Agmon, Shmuel Bounds on exponential decay of eigenfunctions of Schrödinger operators, Schrödinger operators (Como, 1984) (Lecture Notes in Math.), Volume 1159, Springer, Berlin, 1985, pp. 1-38 | DOI | MR | Zbl

[3] Arnolʼd, V. I. Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field, Tr. Mat. Inst. Steklova, Volume 216 (1997), pp. 9-19 (Din. Sist. i Smezhnye Vopr.) | MR | Zbl

[4] Charles, Laurent; Vũ Ngọc, San Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J., Volume 143 (2008) no. 3, pp. 463-511 | DOI | MR | Zbl

[5] Cycon, H. L.; Froese, R. G.; Kirsch, W.; Simon, B. Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, pp. x+319 | MR | Zbl

[6] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999, pp. xii+227 | DOI | MR | Zbl

[7] Dombrowski, Nicolas; Raymond, Nicolas Semiclassical analysis with vanishing magnetic fields, J. Spectr. Theory, Volume 3 (2013) no. 3, pp. 423-464 | DOI | MR

[8] Fournais, Søren; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | DOI | Numdam | MR | Zbl

[9] Fournais, Søren; Helffer, Bernard Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, pp. xx+324 | MR | Zbl

[10] Fournais, Søren; Persson, Mikael Strong diamagnetism for the ball in three dimensions, Asymptot. Anal., Volume 72 (2011) no. 1-2, pp. 77-123 | MR | Zbl

[11] Helffer, Bernard Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, pp. vi+107 | MR | Zbl

[12] Helffer, Bernard; Kordyukov, Yuri A. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom, J. Funct. Anal., Volume 257 (2009) no. 10, pp. 3043-3081 | DOI | MR | Zbl

[13] Helffer, Bernard; Kordyukov, Yuri A. Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis (Contemp. Math.), Volume 535, Amer. Math. Soc., Providence, RI, 2011, pp. 55-78 | DOI | MR | Zbl

[14] Helffer, Bernard; Kordyukov, Yuri A. Eigenvalue estimates for a three-dimensional magnetic Schrödinger operator, Asymptot. Anal., Volume 82 (2013), pp. 65-89 | MR | Zbl

[15] Helffer, Bernard; Mohamed, Abderemane Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40-81 | DOI | MR | Zbl

[16] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl

[17] Helffer, Bernard; Morame, Abderemane Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 1, pp. 105-170 | DOI | EuDML | Numdam | MR | Zbl

[18] Helffer, Bernard; Sjöstrand, J. Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.), Volume 39 (1989), pp. 1-124 | EuDML | Numdam | MR | Zbl

[19] Ivrii, Victor Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998, pp. xvi+731 | MR | Zbl

[20] Kato, Tosio Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Volume 13 (1972), p. 135-148 (1973) | MR | Zbl

[21] Lieb, E.H.; Thirring, W. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics (1976), pp. 269-303 | Zbl

[22] Littlejohn, Robert G. A guiding center Hamiltonian: a new approach, J. Math. Phys., Volume 20 (1979) no. 12, pp. 2445-2458 | DOI | MR | Zbl

[23] Martinez, André An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002, pp. viii+190 | MR | Zbl

[24] McDuff, Dusa; Salamon, Dietmar Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998, pp. x+486 | MR | Zbl

[25] Montgomery, Richard Hearing the zero locus of a magnetic field, Comm. Math. Phys., Volume 168 (1995) no. 3, pp. 651-675 http://projecteuclid.org/getRecord?id=euclid.cmp/1104272494 | DOI | MR | Zbl

[26] Popoff, Nicolas; Raymond, Nicolas When the 3D magnetic Laplacian meets a curved edge in the semiclassical limit, SIAM J. Math. Anal., Volume 45 (2013) no. 4, pp. 2354-2395 | DOI | MR | Zbl

[27] Raymond, Nicolas Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2, Ann. Henri Poincaré, Volume 10 (2009) no. 1, pp. 95-122 | DOI | MR | Zbl

[28] Raymond, Nicolas Semiclassical 3D Neumann Laplacian with variable magnetic field: a toy model, Comm. Partial Differential Equations, Volume 37 (2012) no. 9, pp. 1528-1552 | DOI | MR | Zbl

[29] Raymond, Nicolas From the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical limit, Anal. PDE, Volume 6 (2013) no. 6, pp. 1289-1326 | DOI | MR | Zbl

[30] Robert, Didier Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987, pp. x+329 | MR | Zbl

[31] Simon, Barry Kato’s inequality and the comparison of semigroups, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 97-101 | DOI | MR | Zbl

[32] Truc, Françoise Semi-classical asymptotics for magnetic bottles, Asymptot. Anal., Volume 15 (1997) no. 3-4, pp. 385-395 | MR | Zbl

[33] Colin de Verdière, Yves L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/getRecord?id=euclid.cmp/1104115337 | DOI | MR | Zbl

[34] Vũ Ngọc, San Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math., Volume 53 (2000) no. 2, pp. 143-217 | DOI | MR | Zbl

[35] Vũ Ngọc, San Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses, 22, Société Mathématique de France, Paris, 2006, pp. vi+156 | MR | Zbl

[36] Vũ Ngọc, San Quantum Birkhoff normal forms and semiclassical analysis, Noncommutativity and singularities (Adv. Stud. Pure Math.), Volume 55, Math. Soc. Japan, Tokyo, 2009, pp. 99-116 | MR | Zbl

[37] Weinstein, Alan Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., Volume 6 (1971), p. 329-346 (1971) | DOI | MR | Zbl

[38] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, pp. xii+431 | MR | Zbl

  • Morin, Léo A semiclassical Birkhoff normal form for constant-rank magnetic fields, Analysis PDE, Volume 17 (2024) no. 5, pp. 1593-1632 | DOI:10.2140/apde.2024.17.1593 | Zbl:1546.35131
  • Charles, Laurent On the spectrum of nondegenerate magnetic Laplacians, Analysis PDE, Volume 17 (2024) no. 6, pp. 1907-1952 | DOI:10.2140/apde.2024.17.1907 | Zbl:1547.35477
  • Arnaiz, Víctor; Rivière, Gabriel Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3, Journal de l'École Polytechnique – Mathématiques, Volume 11 (2024), pp. 909-956 | DOI:10.5802/jep.269 | Zbl:7912280
  • Morin, Léo; Raymond, Nicolas; Vũ Ngoc, San Eigenvalue Asymptotics for Confining Magnetic Schrödinger Operators with Complex Potentials, International Mathematics Research Notices, Volume 2023 (2023) no. 17, p. 14547 | DOI:10.1093/imrn/rnac230
  • Barbaroux, Jean-Marie; Le Treust, Loïc; Raymond, Nicolas; Stockmeyer, Edgardo The Dirac bag model in strong magnetic fields, Pure and Applied Analysis, Volume 5 (2023) no. 3, pp. 643-727 | DOI:10.2140/paa.2023.5.643 | Zbl:1528.35143
  • Hireche, Faouzi; Ghomari, Kaoutar Spectrum of semiclassical Schrödinger operators for two-frequency resonance, Asymptotic Analysis, Volume 127 (2022) no. 1-2, pp. 191-200 | DOI:10.3233/asy-211691 | Zbl:1509.35257
  • Eyvazov, E. H. Correct proof of finding the exact lower bound of the Rayleigh magnetic value, Baku Mathematical Journal, Volume 1 (2022) no. 1, pp. 53-62 | DOI:10.32010/j.bmj.2022.06 | Zbl:1549.35194
  • Morin, Léo Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle, Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 65-79 | DOI:10.5802/cml.83 | Zbl:1503.58014
  • Asselle, Luca; Benedetti, Gabriele Normal forms for strong magnetic systems on surfaces: trapping regions and rigidity of Zoll systems, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 6, pp. 1871-1897 | DOI:10.1017/etds.2021.11 | Zbl:1513.70067
  • Morin, Léo A semiclassical Birkhoff normal form for symplectic magnetic wells, Journal of Spectral Theory, Volume 12 (2022) no. 2, pp. 459-496 | DOI:10.4171/jst/406 | Zbl:1513.81064
  • Gomes, Seán; Hassell, Andrew Semiclassical scarring on tori in KAM Hamiltonian systems, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 5, pp. 1769-1790 | DOI:10.4171/jems/1146 | Zbl:1495.81051
  • Ifa, A.; Louati, H.; Rouleux, M., 2021 Days on Diffraction (DD) (2021), p. 1 | DOI:10.1109/dd52349.2021.9598610
  • Boil, Grégory; Ngọc, San Vũ Long-time dynamics of coherent states in strong magnetic fields, American Journal of Mathematics, Volume 143 (2021) no. 6, pp. 1747-1789 | DOI:10.1353/ajm.2021.0045 | Zbl:1484.81026
  • Deleporte, Alix; Vũ Ngọc, San Uniform spectral asymptotics for semiclassical wells on phase space loops, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 1, pp. 3-32 | DOI:10.1016/j.indag.2020.06.007 | Zbl:1455.81023
  • Bonthonneau, Yannick Guedes; Tho, Nguyen Duc; Raymond, Nicolas; Ngọc, San Vũ Magnetic WKB constructions on surfaces, Reviews in Mathematical Physics, Volume 33 (2021) no. 7, p. 41 (Id/No 2150022) | DOI:10.1142/s0129055x21500227 | Zbl:1476.58009
  • Deleporte, Alix Low-energy spectrum of Toeplitz operators with a miniwell, Communications in Mathematical Physics, Volume 378 (2020) no. 3, pp. 1587-1647 | DOI:10.1007/s00220-020-03791-4 | Zbl:1447.32031
  • Dauge, Monique; Miqueu, Jean-Philippe; Raymond, Nicolas On the semiclassical Laplacian with magnetic field having self-intersecting zero set, Journal of Spectral Theory, Volume 10 (2020) no. 4, pp. 1211-1252 | DOI:10.4171/jst/325 | Zbl:1470.35245
  • Kordyukov, Yuri A. Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, pp. 911-943 | DOI:10.1007/s00209-020-02462-3 | Zbl:1499.58023
  • Asselle, Luca; Lange, Christian On the rigidity of Zoll magnetic systems on surfaces, Nonlinearity, Volume 33 (2020) no. 7, pp. 3173-3194 | DOI:10.1088/1361-6544/ab839c | Zbl:1444.37050
  • Raymond, Nicolas; Royer, Julien Absence of embedded eigenvalues for translationally invariant magnetic Laplacians, Journal of Mathematical Physics, Volume 60 (2019) no. 7, p. 073506 | DOI:10.1063/1.5097162 | Zbl:1421.35061
  • Deleporte, Alix Low-energy spectrum of Toeplitz operators: the case of wells, Journal of Spectral Theory, Volume 9 (2019) no. 1, pp. 79-125 | DOI:10.4171/jst/241 | Zbl:1462.32009
  • Miqueu, Jean-Philippe Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field, Annales Henri Poincaré, Volume 19 (2018) no. 7, pp. 2021-2068 | DOI:10.1007/s00023-018-0681-7 | Zbl:1398.35032
  • De Verdière, Yves Colin; Hillairet, Luc; Trélat, Emmanuel Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Mathematical Journal, Volume 167 (2018) no. 1, pp. 109-174 | DOI:10.1215/00127094-2017-0037 | Zbl:1388.35137
  • Nguyen, Duc Thọ; Raymond, Nicolas; Ngọc, San Vũ Boundary effects on the magnetic Hamiltonian dynamics in two dimensions, L'Enseignement Mathématique. 2e Série, Volume 64 (2018) no. 3-4, pp. 353-369 | DOI:10.4171/lem/64-3/4-7 | Zbl:1435.70034
  • Savale, Nikhil Koszul complexes, Birkhoff normal form and the magnetic Dirac operator, Analysis PDE, Volume 10 (2017) no. 8, pp. 1793-1844 | DOI:10.2140/apde.2017.10.1793 | Zbl:1371.35182
  • Cornean, Horia D.; Helffer, Bernard; Purice, Radu Low lying spectral gaps induced by slowly varying magnetic fields, Journal of Functional Analysis, Volume 273 (2017) no. 1, pp. 206-282 | DOI:10.1016/j.jfa.2017.04.002 | Zbl:1372.35255
  • Helffer, Bernard; Sundqvist, Mikael Persson On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator, Journal of Mathematical Analysis and Applications, Volume 449 (2017) no. 1, pp. 138-153 | DOI:10.1016/j.jmaa.2016.11.058 | Zbl:1356.81132
  • FOURNAIS, Søren; LE TREUST, Loïc; RAYMOND, Nicolas; VAN SCHAFTINGEN, Jean Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian, Journal of the Mathematical Society of Japan, Volume 69 (2017) no. 4 | DOI:10.2969/jmsj/06941667
  • Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas Curvature induced magnetic bound states: towards the tunneling effect for the ellipse, Journées équations aux dérivées partielles (2017), p. 1 | DOI:10.5802/jedp.644
  • Helffer, Bernard; Kordyukov, Yuri; Raymond, Nicolas; Vũ Ngọc, San Magnetic wells in dimension three, Analysis PDE, Volume 9 (2016) no. 7, p. 1575 | DOI:10.2140/apde.2016.9.1575
  • Bonnaillie-Noël, V.; Hérau, Frederic; Raymond, Nicolas Magnetic WKB constructions, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 2, pp. 817-891 | DOI:10.1007/s00205-016-0987-x | Zbl:1338.35379
  • Helffer, Bernard; Kordyukov, Yuri A. Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator, Annales Henri Poincaré, Volume 16 (2015) no. 7, pp. 1651-1688 | DOI:10.1007/s00023-014-0356-y | Zbl:1338.81187
  • Helffer, Bernard; Kachmar, Ayman The Ginzburg-Landau functional with vanishing magnetic field, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 1, pp. 55-122 | DOI:10.1007/s00205-015-0856-z | Zbl:1331.35330
  • Boatto, Stefanella; Koiller, Jair Vortices on closed surfaces, Geometry, mechanics, and dynamics. The legacy of Jerry Marsden. Selected papers presented at a focus program, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, July 2012, New York, NY: Springer, 2015, pp. 185-237 | DOI:10.1007/978-1-4939-2441-7_10 | Zbl:1402.76034
  • Raymond, N. Breaking a magnetic zero locus: asymptotic analysis, M3AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 14, pp. 2785-2817 | DOI:10.1142/s0218202514500377 | Zbl:1303.35049

Cité par 35 documents. Sources : Crossref, zbMATH