[Géométrie et spectre pour les puits magnétiques en dimension 2]
Cet article est consacré à la mécanique classique et l’analyse spectrale d’un hamiltonien purement magnétique dans
This paper is devoted to the classical mechanics and spectral analysis of a pure magnetic Hamiltonian in
Keywords: magnetic field, normal form, spectral theory, semiclassical limit, Hamiltonian flow, microlocal analysis
Mots-clés : champ magnétique, forme normale, théorie spectrale, limite semi-classique, flot hamiltonien, analyse microlocale
Raymond, Nicolas 1 ; Vũ Ngọc, San 1
@article{AIF_2015__65_1_137_0, author = {Raymond, Nicolas and V\~{u} Ngọc, San}, title = {Geometry and {Spectrum} in {2D} {Magnetic} {Wells}}, journal = {Annales de l'Institut Fourier}, pages = {137--169}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2927}, zbl = {1327.81207}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2927/} }
TY - JOUR AU - Raymond, Nicolas AU - Vũ Ngọc, San TI - Geometry and Spectrum in 2D Magnetic Wells JO - Annales de l'Institut Fourier PY - 2015 SP - 137 EP - 169 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2927/ DO - 10.5802/aif.2927 LA - en ID - AIF_2015__65_1_137_0 ER -
%0 Journal Article %A Raymond, Nicolas %A Vũ Ngọc, San %T Geometry and Spectrum in 2D Magnetic Wells %J Annales de l'Institut Fourier %D 2015 %P 137-169 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2927/ %R 10.5802/aif.2927 %G en %F AIF_2015__65_1_137_0
Raymond, Nicolas; Vũ Ngọc, San. Geometry and Spectrum in 2D Magnetic Wells. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 137-169. doi : 10.5802/aif.2927. https://aif.centre-mersenne.org/articles/10.5802/aif.2927/
[1] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of
[2] Bounds on exponential decay of eigenfunctions of Schrödinger operators, Schrödinger operators (Como, 1984) (Lecture Notes in Math.), Volume 1159, Springer, Berlin, 1985, pp. 1-38 | DOI | MR | Zbl
[3] Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field, Tr. Mat. Inst. Steklova, Volume 216 (1997), pp. 9-19 (Din. Sist. i Smezhnye Vopr.) | MR | Zbl
[4] Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J., Volume 143 (2008) no. 3, pp. 463-511 | DOI | MR | Zbl
[5] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, pp. x+319 | MR | Zbl
[6] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999, pp. xii+227 | DOI | MR | Zbl
[7] Semiclassical analysis with vanishing magnetic fields, J. Spectr. Theory, Volume 3 (2013) no. 3, pp. 423-464 | DOI | MR
[8] Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | DOI | Numdam | MR | Zbl
[9] Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, pp. xx+324 | MR | Zbl
[10] Strong diamagnetism for the ball in three dimensions, Asymptot. Anal., Volume 72 (2011) no. 1-2, pp. 77-123 | MR | Zbl
[11] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, pp. vi+107 | MR | Zbl
[12] Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom, J. Funct. Anal., Volume 257 (2009) no. 10, pp. 3043-3081 | DOI | MR | Zbl
[13] Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis (Contemp. Math.), Volume 535, Amer. Math. Soc., Providence, RI, 2011, pp. 55-78 | DOI | MR | Zbl
[14] Eigenvalue estimates for a three-dimensional magnetic Schrödinger operator, Asymptot. Anal., Volume 82 (2013), pp. 65-89 | MR | Zbl
[15] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40-81 | DOI | MR | Zbl
[16] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl
[17] Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 1, pp. 105-170 | DOI | EuDML | Numdam | MR | Zbl
[18] Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.), Volume 39 (1989), pp. 1-124 | EuDML | Numdam | MR | Zbl
[19] Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998, pp. xvi+731 | MR | Zbl
[20] Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Volume 13 (1972), p. 135-148 (1973) | MR | Zbl
[21] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics (1976), pp. 269-303 | Zbl
[22] A guiding center Hamiltonian: a new approach, J. Math. Phys., Volume 20 (1979) no. 12, pp. 2445-2458 | DOI | MR | Zbl
[23] An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002, pp. viii+190 | MR | Zbl
[24] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998, pp. x+486 | MR | Zbl
[25] Hearing the zero locus of a magnetic field, Comm. Math. Phys., Volume 168 (1995) no. 3, pp. 651-675 http://projecteuclid.org/getRecord?id=euclid.cmp/1104272494 | DOI | MR | Zbl
[26] When the 3D magnetic Laplacian meets a curved edge in the semiclassical limit, SIAM J. Math. Anal., Volume 45 (2013) no. 4, pp. 2354-2395 | DOI | MR | Zbl
[27] Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2, Ann. Henri Poincaré, Volume 10 (2009) no. 1, pp. 95-122 | DOI | MR | Zbl
[28] Semiclassical 3D Neumann Laplacian with variable magnetic field: a toy model, Comm. Partial Differential Equations, Volume 37 (2012) no. 9, pp. 1528-1552 | DOI | MR | Zbl
[29] From the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical limit, Anal. PDE, Volume 6 (2013) no. 6, pp. 1289-1326 | DOI | MR | Zbl
[30] Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987, pp. x+329 | MR | Zbl
[31] Kato’s inequality and the comparison of semigroups, J. Funct. Anal., Volume 32 (1979) no. 1, pp. 97-101 | DOI | MR | Zbl
[32] Semi-classical asymptotics for magnetic bottles, Asymptot. Anal., Volume 15 (1997) no. 3-4, pp. 385-395 | MR | Zbl
[33] L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/getRecord?id=euclid.cmp/1104115337 | DOI | MR | Zbl
[34] Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math., Volume 53 (2000) no. 2, pp. 143-217 | DOI | MR | Zbl
[35] Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses, 22, Société Mathématique de France, Paris, 2006, pp. vi+156 | MR | Zbl
[36] Quantum Birkhoff normal forms and semiclassical analysis, Noncommutativity and singularities (Adv. Stud. Pure Math.), Volume 55, Math. Soc. Japan, Tokyo, 2009, pp. 99-116 | MR | Zbl
[37] Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., Volume 6 (1971), p. 329-346 (1971) | DOI | MR | Zbl
[38] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, pp. xii+431 | MR | Zbl
- A semiclassical Birkhoff normal form for constant-rank magnetic fields, Analysis PDE, Volume 17 (2024) no. 5, pp. 1593-1632 | DOI:10.2140/apde.2024.17.1593 | Zbl:1546.35131
- On the spectrum of nondegenerate magnetic Laplacians, Analysis PDE, Volume 17 (2024) no. 6, pp. 1907-1952 | DOI:10.2140/apde.2024.17.1907 | Zbl:1547.35477
- Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3, Journal de l'École Polytechnique – Mathématiques, Volume 11 (2024), pp. 909-956 | DOI:10.5802/jep.269 | Zbl:7912280
- Eigenvalue Asymptotics for Confining Magnetic Schrödinger Operators with Complex Potentials, International Mathematics Research Notices, Volume 2023 (2023) no. 17, p. 14547 | DOI:10.1093/imrn/rnac230
- The Dirac bag model in strong magnetic fields, Pure and Applied Analysis, Volume 5 (2023) no. 3, pp. 643-727 | DOI:10.2140/paa.2023.5.643 | Zbl:1528.35143
- Spectrum of semiclassical Schrödinger operators for two-frequency resonance, Asymptotic Analysis, Volume 127 (2022) no. 1-2, pp. 191-200 | DOI:10.3233/asy-211691 | Zbl:1509.35257
- Correct proof of finding the exact lower bound of the Rayleigh magnetic value, Baku Mathematical Journal, Volume 1 (2022) no. 1, pp. 53-62 | DOI:10.32010/j.bmj.2022.06 | Zbl:1549.35194
- Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle, Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 65-79 | DOI:10.5802/cml.83 | Zbl:1503.58014
- Normal forms for strong magnetic systems on surfaces: trapping regions and rigidity of Zoll systems, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 6, pp. 1871-1897 | DOI:10.1017/etds.2021.11 | Zbl:1513.70067
- A semiclassical Birkhoff normal form for symplectic magnetic wells, Journal of Spectral Theory, Volume 12 (2022) no. 2, pp. 459-496 | DOI:10.4171/jst/406 | Zbl:1513.81064
- Semiclassical scarring on tori in KAM Hamiltonian systems, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 5, pp. 1769-1790 | DOI:10.4171/jems/1146 | Zbl:1495.81051
- , 2021 Days on Diffraction (DD) (2021), p. 1 | DOI:10.1109/dd52349.2021.9598610
- Long-time dynamics of coherent states in strong magnetic fields, American Journal of Mathematics, Volume 143 (2021) no. 6, pp. 1747-1789 | DOI:10.1353/ajm.2021.0045 | Zbl:1484.81026
- Uniform spectral asymptotics for semiclassical wells on phase space loops, Indagationes Mathematicae. New Series, Volume 32 (2021) no. 1, pp. 3-32 | DOI:10.1016/j.indag.2020.06.007 | Zbl:1455.81023
- Magnetic WKB constructions on surfaces, Reviews in Mathematical Physics, Volume 33 (2021) no. 7, p. 41 (Id/No 2150022) | DOI:10.1142/s0129055x21500227 | Zbl:1476.58009
- Low-energy spectrum of Toeplitz operators with a miniwell, Communications in Mathematical Physics, Volume 378 (2020) no. 3, pp. 1587-1647 | DOI:10.1007/s00220-020-03791-4 | Zbl:1447.32031
- On the semiclassical Laplacian with magnetic field having self-intersecting zero set, Journal of Spectral Theory, Volume 10 (2020) no. 4, pp. 1211-1252 | DOI:10.4171/jst/325 | Zbl:1470.35245
- Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, pp. 911-943 | DOI:10.1007/s00209-020-02462-3 | Zbl:1499.58023
- On the rigidity of Zoll magnetic systems on surfaces, Nonlinearity, Volume 33 (2020) no. 7, pp. 3173-3194 | DOI:10.1088/1361-6544/ab839c | Zbl:1444.37050
- Absence of embedded eigenvalues for translationally invariant magnetic Laplacians, Journal of Mathematical Physics, Volume 60 (2019) no. 7, p. 073506 | DOI:10.1063/1.5097162 | Zbl:1421.35061
- Low-energy spectrum of Toeplitz operators: the case of wells, Journal of Spectral Theory, Volume 9 (2019) no. 1, pp. 79-125 | DOI:10.4171/jst/241 | Zbl:1462.32009
- Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field, Annales Henri Poincaré, Volume 19 (2018) no. 7, pp. 2021-2068 | DOI:10.1007/s00023-018-0681-7 | Zbl:1398.35032
- Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Mathematical Journal, Volume 167 (2018) no. 1, pp. 109-174 | DOI:10.1215/00127094-2017-0037 | Zbl:1388.35137
- Boundary effects on the magnetic Hamiltonian dynamics in two dimensions, L'Enseignement Mathématique. 2e Série, Volume 64 (2018) no. 3-4, pp. 353-369 | DOI:10.4171/lem/64-3/4-7 | Zbl:1435.70034
- Koszul complexes, Birkhoff normal form and the magnetic Dirac operator, Analysis PDE, Volume 10 (2017) no. 8, pp. 1793-1844 | DOI:10.2140/apde.2017.10.1793 | Zbl:1371.35182
- Low lying spectral gaps induced by slowly varying magnetic fields, Journal of Functional Analysis, Volume 273 (2017) no. 1, pp. 206-282 | DOI:10.1016/j.jfa.2017.04.002 | Zbl:1372.35255
- On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator, Journal of Mathematical Analysis and Applications, Volume 449 (2017) no. 1, pp. 138-153 | DOI:10.1016/j.jmaa.2016.11.058 | Zbl:1356.81132
- Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian, Journal of the Mathematical Society of Japan, Volume 69 (2017) no. 4 | DOI:10.2969/jmsj/06941667
- Curvature induced magnetic bound states: towards the tunneling effect for the ellipse, Journées équations aux dérivées partielles (2017), p. 1 | DOI:10.5802/jedp.644
- Magnetic wells in dimension three, Analysis PDE, Volume 9 (2016) no. 7, p. 1575 | DOI:10.2140/apde.2016.9.1575
- Magnetic WKB constructions, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 2, pp. 817-891 | DOI:10.1007/s00205-016-0987-x | Zbl:1338.35379
- Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator, Annales Henri Poincaré, Volume 16 (2015) no. 7, pp. 1651-1688 | DOI:10.1007/s00023-014-0356-y | Zbl:1338.81187
- The Ginzburg-Landau functional with vanishing magnetic field, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 1, pp. 55-122 | DOI:10.1007/s00205-015-0856-z | Zbl:1331.35330
- Vortices on closed surfaces, Geometry, mechanics, and dynamics. The legacy of Jerry Marsden. Selected papers presented at a focus program, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, July 2012, New York, NY: Springer, 2015, pp. 185-237 | DOI:10.1007/978-1-4939-2441-7_10 | Zbl:1402.76034
- Breaking a magnetic zero locus: asymptotic analysis, M
AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 14, pp. 2785-2817 | DOI:10.1142/s0218202514500377 | Zbl:1303.35049
Cité par 35 documents. Sources : Crossref, zbMATH