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GEOMETRY AND SPECTRUM
IN 2D MAGNETIC WELLS

by Nicolas RAYMOND & San VŨ NGO. C

Abstract. — This paper is devoted to the classical mechanics and spectral
analysis of a pure magnetic Hamiltonian in R2. It is established that both the
dynamics and the semiclassical spectral theory can be treated through a Birkhoff
normal form and reduced to the study of a family of one dimensional Hamiltonians.
As a corollary, recent results by Helffer-Kordyukov are extended to higher energies.
Résumé. — Cet article est consacré à la mécanique classique et l’analyse spec-

trale d’un hamiltonien purement magnétique dans R2. On démontre que la dyna-
mique et la théorie spectrale semi-classique peuvent être traitées par une forme
normale de Birkhoff, et ainsi réduites à l’étude d’une famille d’hamiltoniens à un
degré de liberté. Corollairement, on obtient une extension de résultats récents de
Helffer et Kordyukov à de plus hautes énergies.

1. Introduction

We consider in this article a charged particle in R2 moving under the
action of a non-vanishing, time-independent magnetic field which is or-
thogonal to the plane. We will study both the classical and quantum (non
relativistic) cases, in a regime where the energy is low but the magnetic
field is strong.
This problem has given rise to many semiclassical investigations in the

last fifteen years. Most of them are motivated by the study of the Ginzburg-
Landau functional and its third critical field HC3 which can be related to
the lowest eigenvalue of the magnetic Laplacian (see [9]). Many cases in-
volving the geometry of the possible boundary and the variations of the
magnetic field have been analyzed (see [25, 15, 16, 17, 12, 27, 10, 13, 14]).

Keywords: magnetic field, normal form, spectral theory, semiclassical limit, Hamiltonian
flow, microlocal analysis.
Math. classification: 81Q20, 35Pxx, 35S05, 70Hxx, 37Jxx.
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Due to the initial motivation, most of the papers provide only asymptotic
expansions of the lowest eigenvalue and do not provide the correspond-
ing approximation for the eigenfunctions. The only paper which explicitly
tackles the approximation of the eigenfunctions and their microlocal prop-
erties is [8], where the authors combine pseudo-differential techniques and a
Grushin reduction. More recently, the contributions [29, 7, 26] display that
the magnetic 2-form and the geometry combine in the semiclassical limit
to produce very fine microlocalization properties for the eigenfunctions. In
particular, it is shown, in various geometric and magnetic settings, that a
normal form procedure can reveal a double scale structure of the magnetic
Laplacian, which is reminiscent of the famous Born-Oppenheimer approx-
imation. It also established that an effective electric operator generates
asymptotic series for the lowest eigenpairs. Such results suggest the fact
that a full Birkhoff normal form analysis in the spirit of [35, 4, 36] could
be implemented for the magnetic Laplacian.
This is a remarkable fact that the Birkhoff procedure has never been

implemented to enlighten the effect of magnetic fields on the low lying
eigenvalues of the magnetic Laplacian. A reason might be that, compared to
the case of a Schrödinger operator with an electric potential, the magnetic
case presents a major difficulty: the symbol itself is not enough to confine
the dynamics in a compact set. Therefore, it is not possible to start with
a simple harmonic approximation at the principal level. This difficulty can
be seen in the recent papers by Helffer and Kordyukov [13] (dimension
two) and [14] (dimension three) which treat cases without boundary. In
dimension three they provide accurate constructions of quasimodes, but do
not establish the asymptotic expansions of the eigenvalues which is still
an open problem. In dimension two, they prove that if the magnetic field
has a unique and non-degenerate minimum, the j-th eigenvalue admits an
expansion in powers of ~1/2 of the form:

λj(~) ∼ ~ min
q∈R2

B(q) + ~2(c1(2j − 1) + c0) +O(~5/2),

where c0 and c1 are constants depending on the magnetic field. In this
paper, we extend their result by obtaining a complete asymptotic expansion
— without odd powers of ~1/2 (see Corollary 1.7)— which actually applies
to more general magnetic wells — see for instance Corollary 1.8.
Let us describe now the methods and results of the paper. As we shall re-

call below, a particle in a magnetic field has a fast rotating motion, coupled
to a slow drift. It is of course expected that the long-time behaviour of the
particle is governed by this drift. We show in this article that it is indeed
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GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS 139

the case, and that the drift motion can be obtained by a one degree of
freedom Hamiltonian system, both in the classical or the quantum setting.
What’s more, the effective Hamiltonian is, for small energies, approximated
by the magnetic field itself.
In order to achieve this, we obtain a normal form that explicitly reduces

the study of the original system to a one degree of freedom Hamiltonian.
In the classical case, this gives an approximation of the dynamics for long
times, of order O(1/E∞), where E is the energy. In the quantum case, this
gives a complete asymptotic expansion of the eigenvalues up to O(~∞),
where ~ is the semiclassical parameter (Planck’s constant).

Classical dynamics

Let (e1, e2, e3) be an orthonormal basis of R3. Our configuration space is
R2 = {q1e1+q2e2; (q1, q2) ∈ R2}, and the magnetic field is ~B = B(q1, q2)e3.
For the moment we only assume that q := (q1, q2) belongs to an open set
Ω where B does not vanish.
With appropriate constants, Newton’s equation for the particle under

the action of the Lorentz force writes

(1.1) q̈ = 2q̇ ∧ ~B.

The kinetic energy E = 1
4 ‖q̇‖

2 is conserved. If the speed q̇ is small, we may
linearize the system, which amounts to have a constant magnetic field.
Then, as is well known, the integration of Newton’s equations gives a cir-
cular motion of angular velocity θ̇ = −2B and radius ‖q̇‖ /2B. Thus, even
if the norm of the speed is small, the angular velocity may be very im-
portant. Now, if B is in fact not constant, then after a while, the particle
may leave the region where the linearization is meaningful. This suggests
a separation of scales, where the fast circular motion is superposed with a
slow motion of the center (Figure 1).
It is known that the system (1.1) is Hamiltonian. In fact, the Hamiltonian

is simply the kinetic energy, but the definition of the phase space requires
the introduction of a magnetic potential. Let A ∈ C∞(R2,R2) such that

~B = ∇∧A.

We may identify A = (A1, A2) with the 1-form A = A1dq1 +A2dq2. Then,
as a differential 2-form, dA = (∂A2

∂q1
− ∂A1

∂q2
)dq1∧dq2 = Bdq1∧dq2. Thus, by

Poincaré lemma we see that, given any smooth magnetic function B(q1, q2),
such a potential A always exists.

TOME 65 (2015), FASCICULE 1



140 Nicolas RAYMOND & San VŨ NGO. C

Figure 1.1. This photograph shows the motion of an electron beam in a
non-uniform magnetic field. One can clearly see the fast rotation coupled
with a drift. In the magnetic literature, the turning point (here on the right),
due to the projection of the phase space motion onto the position space, is
called a mirror point. Credits: Prof. Reiner Stenzel, http://www.physics.ucla.
edu/plasma-exp/beam/BeamLoopyMirror.html

In terms of canonical variables (q, p) ∈ T ∗R2 = R4 the Hamiltonian of
our system is

(1.2) H(q, p) = ‖p−A(q)‖2 .

We use here the Euclidean norm on R2, which allows the identification of
R2 with (R2)∗ by

(1.3) ∀(v, p) ∈ R2 × (R2)∗, p(v) = 〈p, v〉.

Thus, the canonical symplectic structure ω on T ∗R2 is given by

(1.4) ω((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉.

It is easy to check that Hamilton’s equations for H imply Newton’s equa-
tion (1.1). In particular, through the identification (1.3) we have

(1.5) q̇ = 2(p−A).

Main results

We can now state our main results. The starting point is to consider large
time classical dynamics. Indeed, while it is quite easy (and well known)
to find an approximation of the dynamics for finite time, the large time
problem has to face the issue that the conservation of the energy H is not
enough to confine the trajectories in a compact set: the set H−1(E) is not
bounded.
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GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS 141

The first result shows the existence of a smooth symplectic diffeomor-
phism that transforms the initial Hamiltonian into a normal form, up to
any order in the distance to the zero energy surface.

Theorem 1.1. — Let

H(q, p) := ‖p−A(q)‖2 , (q, p) ∈ T ∗R2 = R2 × R2,

where the magnetic potential A : R2 → R2 is smooth. Let B := ∂A2
∂q1
− ∂A1

∂q2

be the corresponding magnetic field. Let Ω ⊂ R2 be an open set where B
does not vanish. Then there exists a symplectic diffeomorphism Φ, defined
in an open set Ω̃ ⊂ Cz1 × R2

z2
, with values in T ∗R2, which identifies the

plane {z1 = 0} ∩ Ω̃ with the surface {H(q, p) = 0 | q ∈ Ω}, and such that

(1.6) H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞),

where f : R2 × R→ R is smooth. Moreover, the map

(1.7) ϕ : Ω 3 q 7→ Φ−1(q,A(q)) ∈ ({0} × R2
z2

) ∩ Ω̃

is a local diffeomorphism and

f ◦ (ϕ(q), 0) = |B(q)| .

Note that similar results were discovered by Littlejohn [22] (who used
non-canonical coordinates but kept track of the modifications of the sym-
plectic form); actually Littlejohn was one of the first to emphasize the role
of Hamiltonian techniques for physics calculations. The mathematical for-
mulation of the averaging method for strong magnetic fields on a surface
can be found in Arnold’s article [3].

In the following theorem we denote by K = |z1|2 f(z2, |z1|2) ◦ Φ−1 the
(completely integrable) normal form of H given be Theorem 1.1 above. Let
ϕtH be the Hamiltonian flow of H, and let ϕtK be the Hamiltonian flow of
K. Since K has separated variables, it is easy to compute its flow. The
following result ensures that ϕtK is a very good approximation to ϕtH for
large times.

Theorem 1.2. — Assume that the magnetic field B > 0 is confining:
there exists C > 0 andM > 0 such that B(q) > C if ‖q‖ >M . Let C0 < C.
Then

(1) The flow ϕtH is uniformly bounded for all starting points (q, p) such
that B(q) 6 C0 and H(q, p) = O(ε) and for times of order O(1/εN ),
where N is arbitrary.

(2) Up to a time of order Tε = O(|ln ε|), we have

(1.8)
∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥ = O(ε∞)

TOME 65 (2015), FASCICULE 1



142 Nicolas RAYMOND & San VŨ NGO. C

for all starting points (q, p) such that B(q) 6 C0 and H(q, p) =
O(ε).

The condition H(q, p) = O(ε) is equivalent to requiring that the initial
speed has norm O(

√
ε), see (1.5). It is interesting to notice that, if one

restricts to regular values of B, one obtains the same control for a much
longer time, as stated below.

Theorem 1.3. — Under the same confinement hypothesis as Theo-
rem 1.2, let J ⊂ (0, C0) be a closed interval such that dB does not vanish
on B−1(J). Then up to a time of order T = O(1/εN ), for an arbitrary
N > 0, we have ∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥ = O(ε∞)
for all starting points (q, p) such that B(q) ∈ J and H(q, p) = O(ε).

It is possible that the longer time T = O(1/εN ) reached in (1.8) could
apply as well for some types of singularities of B; this seems to be an open
question at the moment.
We may now describe the magnetic dynamics in terms of a fast rotating

motion with a slow drift. In order to do this, we introduce the adiabatic
action

I := |z1|2 =
∫
γ

pdq,

where γ is the loop corresponding to the fast motion (which we can ob-
tain by using a local approximation by a constant magnetic field). Since
{I,K} = 0, I is a constant of motion for the flow ϕtK . Moreover, the
Hamiltonian flow of I generates a π-periodic S1 action on the level set
{I = const}. For I 6= 0, the reduced symplectic manifold ΣI := {I =
const}/S1 may be identified with Σ := I−1(0) = H−1(0), endowed with
the symplectic form dξ2∧dx2. (As we shall see in Lemma 2.1 below, we may
also identify Σ with R2

(q1,q2) endowed with the symplectic form Bdq1∧dq2.)
Then, for each value of I, the function K defines a Hamiltonian hI on Σ:

hI(z2) := If(z2, I).

In the next statement, we assume that B is confining and we denote by
T (ε) the time given by Theorems 1.2 or 1.3, depending on the initial value
of B. In view of the fact that the Hamiltonian vector field of K splits into
the sum of commuting vector fields

XK = fXI + IXf(z2,I),

we immediately obtain the following corollary, which is illustrated by
Figure 1.2.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.2. Numerical simulation of the flow of H when the magnetic field
is given by B(x, y) = 2 + x2 + y2 + x3

3 + x4

20 , and ε = 0.05, t ∈ [0, 500]. The
picture also displays in red some level sets of B.

Corollary 1.4 (fast/slow decomposition). — Let N > 0. There exists
a small energy E0 > 0 such that, for all E < E0, for times t 6 T (E),
the magnetic flow ϕtH at kinetic energy H = E is, up to an error of order
O(E∞), the Abelian composition of two motions:

• [fast rotating motion] a periodic flow around the S1-orbits, with
frequency 1

2π
∂K
∂I ;

• [slow drift] the Hamiltonian flow of hI on Σ ' ΣI .

Thus, we can informally describe the motion as a coupling between a
fast rotating motion around a center c(t) ∈ H−1(0) and a slow drift of the
point c(t). The rotating motion depends smoothly on E; in terms of the
original variables (q1, q2), it has a small radius

r =
√
E

B(q) +O(E3/2)

and a fast angular velocity

θ̇ = −2B(q) +O(E).

The motion of c(t), up to an error of order O(E∞), is given by the effective
1D Hamiltonian hI , depending smoothly on the adiabatic action I, of the

TOME 65 (2015), FASCICULE 1
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form
hI(x2, ξ2) = IB(q) +O(I2),

where q and z2 = (x2, ξ2) are related by (1.7). Notice that, at first order,
the flow of hI is given by the flow of IB; thus, modulo an error of order
E2, the trajectories follow the level sets of the magnetic field; Figure 1.2
gives a striking numerical evidence of this.

Under additional hypothesis on hI , one can of course say much more. For
instance, if hI has no critical points at a given energy (as in Theorem 1.3),
then the trajectories are diffeomorphic to circles; then we can introduce a
second adiabatic invariant. In this case, it could be interesting to improve
the estimates using KAM/Nekhoroshev methods.
We turn now to the quantum counterpart of these results. Let m be

an order function on R2, and assume that B ∈ S(m)(1) . Then there exists
another order functionm′ on R2, and a smooth potential A : R2 → R2 with
A ∈ S(m′). Thus, the magnetic Laplacian on R2, H~,A = (−i~∇ − A)2

has a symbol in the class S(m′′) for an order function m′′ on R4. We recall
(see [6, Chapter 7]) that a function m : Rd → [0,∞) is an order function if
there exist constants N0, C0 > 0 such that m(X) 6 C0〈X − Y 〉N0m(Y ) for
any X,Y ∈ Rd. The symbol class S(m) is the space of smooth functions
a~ : Rd → C such that

|∂αx a~(x)| 6 Cαm(x), ∀α ∈ Nd,

uniformly for h ∈ (0, 1]. We will work with the Weyl quantization; for a
classical symbol a = a(x, ξ) ∈ S(m) , it is defined as:

Opw~ aψ(x) = 1
(2π~)2

∫ ∫
ei(x−y)·ξ/~a

(
x+ y

2 , ξ

)
ψ(y) dy dξ, ∀ψ ∈ S(R2).

The first result shows that the spectral theory of H~,A is governed at
first order by the magnetic field itself, viewed as a symbol.

Theorem 1.5. — Assume that the magnetic field B is non vanishing
(Ω = R2). Let H0

~ = Opw~ (H0), where H0 = B(ϕ−1(z2))|z1|2 and the
diffeomorphism ϕ is defined in (1.7). Then there exists a bounded classical
pseudo-differential operator Q~, such that

• Q~ commutes with Opw~ (|z1|2);
• Q~ is relatively bounded with respect to H0

~ with an arbitrarily
small relative bound;

(1)Actually, using the confinement hypothesis of B used in Theorem 1.5 below, it is
enough to impose the weaker condition that H~,A ∈ S(m′′), for some order function
m′′. Then B(q) has to be replaced by a constant larger than C̃1 for q �M0, see (1.9).
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• its Weyl symbol is Oz2(~2 + ~ |z1|2 + |z1|4),
so that the following holds. Assume that the magnetic field is confining:
there exist constants C̃1 > 0, M0 > 0 such that

(1.9) B(q) > C̃1 for |q| >M0.

Let 0 < C1 < C̃1. Then the spectra of H~,A and N~ := H0
~ + Q~ in

(−∞, C1~] are discrete. We denote by 0 < λ1(~) 6 λ2(~) 6 · · · the eigen-
values of H~,A and by 0 < µ1(~) 6 µ2(~) 6 · · · the eigenvalues of N~.
Then for all j ∈ N∗ such that λj(~) 6 C1~ and µj(~) 6 C1~, we have

|λj(~)− µj(~)| = O(~∞).

The proof of Theorem 1.5 relies on the following theorem, which provides
in particular an accurate description of Q~. In the statement, we use the
notation of Theorem 1.1; we recall that Σ is the zero set of the classical
Hamiltonian H.

Theorem 1.6. — For ~ small enough there exists a Fourier Integral
Operator U~ such that

U∗~Uh = I + Z~, U~U
∗
h = I + Z ′~,

where Z~, Z
′
~ are pseudo-differential operators that microlocally vanish in

a neighborhood of Ω̃ ∩ Σ, and

(1.10) U∗~H~,AU~ = N~ +R~,

where
(1) N~ is a classical pseudo-differential operator in S(m) that commutes

with

I~ := −~2 ∂
2

∂x2
1

+ x2
1;

(2) For any Hermite function hn(x1) such that I~hn = ~(2n − 1)hn,
the operator N (n)

~ acting on L2(Rx2) by

hn ⊗N (n)
~ (u) = N~(hn ⊗ u)

is a classical pseudo-differential operator in SR2(m) of ~-order 1
with principal symbol

F (n)(x2, ξ2) = ~(2n− 1)B(q),

where (0, x2 + iξ2) = ϕ(q) as in (1.7);

TOME 65 (2015), FASCICULE 1
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(3) Given any classical pseudo-differential operator D~ with principal
symbol d0 such that d0(z1, z2) = c(z2)|z1|2 +O(|z1|3) with c(z2) 6= 0
and any N > 1, there exist classical pseudo-differential operators
S~,N and KN such that:

(1.11) R~ = S~,N (D~)N +KN +O(~∞),

with KN compactly supported away from a fixed neighborhood of
|z1| = 0.

(4) N~ = H0
~ +Q~, where H0

~ = Opw~ (H0), H0 = B(ϕ−1(z2))|z1|2, and
the operator Q~ is relatively bounded with respect to H0

~ with an
arbitrarily small relative bound.

We recover the result of [13], adding the fact that no odd power of ~1/2

can show up in the asymptotic expansion.

Corollary 1.7 (Low lying eigenvalues). — Assume that B has a uni-
que non-degenerate minimum. Then there exists a constant c0 such that
for any j, the eigenvalue λj(~) has a full asymptotic expansion in integral
powers of ~ whose first terms have the following form:

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =
√

det(B”◦ϕ−1(0))
2B◦ϕ−1(0) , where the minimum of B is reached at ϕ−1(0).

Proof. — The first eigenvalues of H~,A are equal to the eigenvalues of
N (1)

~ (in point (2) of Theorem 1.6). Since B has a non-degenerate mini-
mum, the symbol of N (1)

~ has a non-degenerate minimum, and the spectral
asymptotics of the low-lying eigenvalues for such a 1D pseudo-differential
operator are well known. We get

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =
√

det(B ◦ ϕ−1)”(0)/2. One can easily compute

c1 =
√

det(B” ◦ ϕ−1(0))
2 |det(Dϕ−1(0))| =

√
det(B” ◦ ϕ−1(0))

2B ◦ ϕ−1(0) .

�

Under reasonable assumptions on B, Theorems 1.6 and 1.5 should yield
precise asymptotic expansions even in the regime of energies larger than
c~, where c > minB. For instance, we obtain the following result.

Corollary 1.8 (Magnetic excited states). — Let c < C̃1 be a regular
value of B, and assume that the level set B−1(c) is connected. Then there

ANNALES DE L’INSTITUT FOURIER
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exists ε > 0 such that the eigenvalues of the magnetic Laplacian lying in
the interval [~(c− ε), ~(c+ ε)] have the form

λj(~) = (2n− 1)~f~(~n(j), ~k(j)) +O(~∞), (n(j), k(j)) ∈ Z2,

where f~ = f0 + ~f1 + · · · admits an asymptotic expansion in powers of ~
with smooth coefficients fi ∈ C∞(R2;R) and ∂1f0 = 0, ∂2f0 6= 0. Moreover,
the corresponding eigenfunctions are microlocalized in the annulus B−1([c−
ε, c+ ε]).
In particular, if n = 1 and c ∈ (minB, 3 minB), the eigenvalues of the

magnetic Laplacian in the interval [~(c − ε), ~(c + ε)] have gaps of order
O(~2).

Proof. — As before, the spectrum of H~,A below C1~ is the union of
the eigenvalues below C1~ of N (n)

~ , n ∈ N∗. For each n, the usual Bohr-
Sommerfeld rules for 1D semiclassical pseudo-differential operators (see
for instance [34] and the references therein) state that the eigenvalues of
~−1N (n)

~ in the interval [c−ε, c+ε] admit a complete asymptotic expansion
of the form

(2n− 1)f (n)
0 (~j) + ~f (n)

1 (~j) + · · · ,

where f (n)
0 , f

(n)
1 , . . . , are smooth functions and f (n)

0 = f0 does not depend
on n and satisfies (f (n)

0 )′ 6= 0 (precisely, 2πf−1
0 (c) is the area of the curve

B−1(c) viewed in Σ, up to a constant). �

Comments on Theorem 1.6. When finishing to write this paper, we
discovered that Theorem 1.6 appears in a close form in [19, Theorem 6.2.7].
However, several differences have to be mentioned. Our proof uses a defor-
mation argument à la Moser which relies on a global symplectic parameter-
ization of Σ and an intrinsic description of the symplectic normal bundle
NΣ. Both the classical and quantum Birkhoff normal forms are obtained
simultaneously by endowing the space of formal series with the semiclas-
sical Weyl product, instead of the usual product. Actually, the particular
grading in (z1, ~) that we use is tightly linked to the physical nature of the
problem. The result itself is different since we obtain a uniform remainder
R~ which vanishes to any order in that grading.

Generalizations. In dimension 3, an asymptotic expansion of the eigen-
values is conjectured in [14]. We believe that the methods presented in our
paper are likely to apply in their context and should help prove their con-
jecture. However, in odd dimensions, a different approach is needed, since
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the zero set H−1(0) cannot be symplectic. More generally, in any dimen-
sion, it would be very interesting to investigate the case when the magnetic
2-form is degenerate.
Organization of the paper. The paper is organized as follows. Section 2

is devoted to the proof of Theorems 1.1 and 1.6. Then, we prove Theo-
rems 1.2 and 1.3 in Section 3. Finally in Section 4 we provide the proof of
Theorem 1.5.

2. Magnetic Birkhoff normal form

In this section we prove Theorem 1.1.

2.1. Symplectic normal bundle of Σ

We introduce the submanifold of all particles at rest (q̇ = 0):

Σ := H−1(0) = {(q, p); p = A(q)}.

Since it is a graph, it is an embedded submanifold of R4, parameterized by
q ∈ R2.

Lemma 2.1. — Σ is a symplectic submanifold of R4. In fact,

j∗ω�Σ = dA ' B,

where j : R2 → Σ is the embedding j(q) = (q,A(q)).

Proof. — We compute

j∗ω = j∗
(
dp1 ∧ dq1 + dp2 ∧ dq2

)
=
(
− ∂A1

∂q2
+ ∂A2

∂q1

)
dq1 ∧ dq2 6= 0.

�

Since we are interested in the low energy regime, we wish to describe
a small neighborhood of Σ in R4, which amounts to understanding the
normal symplectic bundle of Σ. For any q ∈ Ω, we denote by TqA : R2 →
R2 the tangent map of A. Then of course the vectors (Q,TqA(Q)), with
Q ∈ TqΩ = R2, span the tangent space Tj(q)Σ. It is interesting to notice
that the symplectic orthogonal Tj(q)Σ⊥ is very easy to describe as well.

Lemma 2.2. — For any q ∈ Ω, the vectors

u1 := 1√
|B|

(e1, tTqA(e1)); v1 :=
√
|B|
B

(e2, tTqA(e2))

form a symplectic basis of Tj(q)Σ⊥.
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Proof. — Let (Q1, P1) ∈ Tj(q)Σ and (Q2, P2) with P2 = tTqA(Q2). Then
from (1.4) we get

ω((Q1, P1), (Q2, P2)) = 〈TqA(Q1), Q2〉 − 〈tTqA(Q2), Q1〉
= 0.

This shows that u1 and v1 belong to Tj(q)Σ⊥. Finally

ω(u1, v1) = 1
B

(〈tTqA(e1), e2〉 − 〈tTqA(e2), e1〉)

= 1
B
〈e1, (TqA− tTqA)(e2)〉

= 1
B
〈e1, ~B ∧ e2〉 = −B

B
〈e1, e1〉 = −1.

�

Thanks to this lemma, we are able to give a simple formula for the
transversal Hessian of H, which governs the linearized (fast) motion:

Lemma 2.3. — The transversal Hessian of H, as a quadratic form on
Tj(q)Σ⊥, is given by

∀q ∈ Ω,∀(Q,P ) ∈ Tj(q)Σ⊥, d2
qH((Q,P )2) = 2‖Q ∧ ~B‖2.

Proof. — Let (q, p) = j(q). From (1.2) we get

dH = 2〈p−A, dp− TqA ◦ dq〉.

Thus

d2H((Q,P )2) = 2‖(dp− TqA ◦ dq)(Q,P )‖2 + 〈p−A,M((Q,P )2)〉,

and it is not necessary to compute the quadratic form M , since p−A = 0.
We obtain

d2H((Q,P )2) = 2‖P − TqA(Q)‖2

= 2‖(tTqA− TqA)(Q)‖2 = 2‖Q ∧ ~B‖2.

�

We may express this Hessian in the symplectic basis (u1, v1) given by
Lemma 2.2:

(2.1) d2H�Tj(q)Σ⊥ =
(

2 |B| 0
0 2 |B|

)
.

Indeed, ‖e1∧ ~B‖2 = B2, and the off-diagonal term is 1
B 〈e1∧ ~B, e2∧ ~B〉 = 0.
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2.2. Proof of Theorem 1.1

We use the notation of the previous section. We endow Cz1 × R2
z2

with
canonical variables z1 = x1 + iξ1, z2 = (x2, ξ2), and symplectic form ω0 :=
dξ1∧dx1 +dξ2∧dx2. By Darboux’s theorem, there exists a diffeomorphism
g : Ω→ g(Ω) ⊂ R2

z2
such that g(q0) = 0 and

g∗(dξ2 ∧ dx2) = j∗ω.

(We identify g with ϕ in the statement of the theorem.) In other words,
the new embedding ̃ := j ◦ g−1 : R2 → Σ is symplectic. In fact we can give
an explicit choice for g by introducing the global change of variables:

x2 = q1, ξ2 =
∫ q2

0
B(q1, s) ds.

Consider the following map Φ̃:

C× Ω Φ̃−→ NΣ(2.2)
(x1 + iξ1, z2) 7→ x1u1(z2) + ξ1v1(z2),(2.3)

where u1(z2) and v1(z2) are the vectors defined in Lemma 2.2 with q =
g−1(z2). This is an isomorphism between the normal symplectic bundle of
{0} × Ω and NΣ, the normal symplectic bundle of Σ: indeed, Lemma 2.2
says that for fixed z2, the map z1 7→ Φ̃(z1, z2) is a linear symplectic map.
This implies, by a general result of Weinstein [37], that there exists a sym-
plectomorphism Φ from a neighborhood of {0} × Ω to a neighborhood of
̃(Ω) ⊂ Σ whose differential at {0} × Ω is equal to Φ̃. Let us recall how to
prove this.
First, we may identify Φ̃ with a map into R4 by

Φ̃(z1, z2) = ̃(z2) + x1u1(z2) + ξ1v1(z2).

Its Jacobian at z1 = 0 in the canonical basis of Tz1C × Tz2Ω = R4 is a
matrix with column vectors [u1, v1, Tz2 ̃(e1), Tz2 ̃(e2)], which by Lemma 2.2
is a basis of R4: thus Φ̃ is a local diffeomorphism at every (0, z2). Therefore
if ε > 0 is small enough, Φ̃ is a diffeomorphism of B(ε)× Ω into its image.
(B(ε) ⊂ C is the open ball of radius ε).
Since ̃ is symplectic, Lemma 2.2 implies that the basis

[
u1, v1, Tz2 ̃(e1),

Tz2 ̃(e2)
]
is symplectic in R4; thus the Jacobian of Φ̃ on {0} × Ω is sym-

plectic. This in turn can be expressed by saying that the 2-form

ω0 − Φ̃∗ω0

vanishes on {0} × Ω.

ANNALES DE L’INSTITUT FOURIER



GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS 151

Lemma 2.4. — Let us consider ω0 and ω1 two 2-forms on R4 which are
closed and non degenerate. Let us assume that ω1|z1=0 = ω0|z1=0. For any
bounded open set U ⊂ R2, there exist a neighborhood of (0, 0)× U and a
change of coordinates ψ1 such that:

ψ∗1ω1 = ω0 and ψ1 = Id +O(|z1|2).

Proof. — The proof of this relative Darboux lemma is standard but we
recall it for completeness (see [24, p. 92]).

Relative Poincaré Lemma. Let us begin to recall how we can find a
1-form σ defined in a neighborhood of z1 = 0 such that:

τ := ω1 − ω0 = dσ and σ = O(|z1|2).

We introduce the family of diffeomorphisms (φt)0<t61 defined by:

φt(x1, x2, ξ1, ξ2) = (tx1, x2, tξ1, ξ2)

and we let:
φ0(x1, x2, ξ1, ξ2) = (0, x2, 0, ξ2).

We have:

(2.4) φ∗0τ = 0 and φ∗1τ = τ ;

Let us denote by Xt the vector field associated with φt:

Xt = dφt
dt

(φ−1
t ) = t−1x1e1 + t−1ξ1e3,

with e1 = (1, 0, 0, 0) and e3 = (0, 0, 1, 0). Let us compute the Lie derivative
of τ along Xt: d

dtφ
∗
t τ = φ∗tLXtτ. From the Cartan formula, we have: LXt =

ι(Xt)dτ + d(ι(Xt)τ). Since τ is closed on R4, we have dτ = 0. Therefore it
follows:

(2.5) d

dt
φ∗t τ = d(φ∗t ι(Xt)τ).

We consider the 1-form

σt := φ∗t ι(Xt)τ=x1τφt(x1,x2,ξ1,ξ2)(e1,∇φt(·))+ξ1τφt(x1,x2,ξ1,ξ2)(e3,∇φt(·))

= O(|z1|2).

We see from (2.5) that the map t 7→ φ∗t τ is smooth on [0, 1]. To conclude,
let σ =

∫ 1
0 σt dt; it follows from (2.4) and (2.5) that:

d

dt
φ∗t τ = dσt and τ = dσ.
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Conclusion. We use a standard deformation argument due to Moser.
For t ∈ [0, 1], we let: ωt = ω0 + t(ω1−ω0). The 2-form ωt is closed and non
degenerate (up to choosing a neighborhood of z1 = 0 small enough). We
look for ψt such that:

ψ∗t ωt = ω0.

For that purpose, let us determine a vector field Yt such that:

d

dt
ψt = Yt(ψt).

By using again the Cartan formula, we get:

0 = d

dt
ψ∗t ωt = ψ∗t

(
d

dt
ωt + ι(Yt)dωt + d(ι(Yt)ωt)

)
.

This becomes:

ω0 − ω1 = d(ι(Yt)ωt).

We are led to solve:

ι(Yt)ωt = −σ.

By non degeneracy of ωt, this determines Yt. Choosing a neighborhood of
(0, 0)×U small enough, we infer that ψt exists until the time t = 1 and that
it satisfies ψ∗t ωt = ω0. Since σ = O(|z1|2), we get ψ1 = Id +O(|z1|2). �

Lemma 2.5. — There exists a map S : B(ε)× Ω → B(ε)× Ω, which is
tangent to the identity along {0} × Ω, such that

S∗Φ̃∗ω = ω0.

Proof. — It is sufficient to apply Lemma 2.4 to ω1 = Φ̃∗ω0. �

We let Φ := Φ̃ ◦ S; this is the claimed symplectic map.
Let us now analyze how the Hamiltonian H is transformed under Φ.

We denote the new coordinates by (ẑ1, ẑ2) := Φ−1(q, p). The zero-set
Σ = H−1(0) is now {0} × Ω, and the symplectic orthogonal T̃(0,ẑ2)Σ⊥
is canonically equal to C × {ẑ2}. By (2.1), the matrix of the transversal
Hessian of H ◦ Φ in the canonical basis of C is simply
(2.6)

d2(H ◦Φ)�C×{ẑ2} = d2
Φ(0,ẑ2)H ◦(dΦ)2 =

(
2
∣∣B(g−1(ẑ2))

∣∣ 0
0 2

∣∣B(g−1(ẑ2))
∣∣) .
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Therefore, by Taylor’s formula in the ẑ1 variable (locally uniformly with
respect to the ẑ2 variable seen as a parameter), we get

H ◦ Φ(ẑ1, ẑ2) = H ◦ Φ�ẑ1=0 + dH ◦ Φ�ẑ1=0(ẑ1)

+ 1
2d

2(H ◦ Φ)�ẑ1=0(ẑ2
1) +O(|ẑ1|3)

= 0 + 0 +
∣∣B(g−1(ẑ2))

∣∣ |ẑ1|2 +O(|ẑ1|3).

In order to obtain the result claimed in the theorem, it remains to apply a
formal Birkhoff normal form in the ẑ1 variable, to simplify the remainder
O(ẑ3

1). This classical normal form is a particular case of the semiclassical
normal form that we prove below (Proposition 2.7); therefore we simply
refer to this proposition, and this finishes the proof of the theorem, where,
for simplicity of notation, the variables (z1, z2) actually refer to (ẑ1, ẑ2).

2.3. Semiclassical Birkhoff normal form

We follow the spirit of [4, 36]. In the coordinates x̂1, ξ̂1, x̂2, ξ̂2, the Hamil-
tonian takes the form:

(2.7) Ĥ(ẑ1, ẑ2) = H0 +O(|ẑ1|3), where H0 = B(g−1(ẑ2))|ẑ1|2.

Let us now consider the space of the formal power series in x̂1, ξ̂1, ~ with
coefficients smoothly depending on (x̂2, ξ̂2) : E = C∞

x̂2,ξ̂2
[x̂1, ξ̂1, ~]. We en-

dow E with the Moyal product (compatible with the Weyl quantization)
denoted by ? and the commutator of two series κ1 and κ2 (in all variables
(x̂1, ξ̂1, x̂2, ξ̂2)) is defined as:

[κ1, κ2] = κ1 ? κ2 − κ2 ? κ1.

Explicitly, we have

[κ1, κ2](x̂, ξ̂, ~) = 2 sinh
( ~

2i�
)(
f(x, ξ, ~)g(y, η, ~)

)∣∣∣
x=y=x̂,
ξ=η=ξ̂

where

� =
2∑
j=1

∂ξj∂yj − ∂xj∂ηj .

Notation 2.6. — The degree of x̂α1 ξ̂
β
1 ~l is α + β + 2l. DN denotes the

space of the monomials of degree N . ON is the space of formal series with
valuation at least N . We notice that [ON1 ,ON2 ] ⊂ ON1+N2 . For τ, γ ∈ E ,
we denote adτγ = [τ, γ].
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Proposition 2.7. — Given γ ∈ O3, there exist formal power series
τ, κ ∈ O3 such that:

ei~
−1adτ (H0 + γ) = H0 + κ,

with: [κ, |ẑ1|2] = 0.

Proof. — Let N > 1. Assume that we have, for N > 1 and τN ∈ O3:

eih
−1adτN (H0 + γ) = H0 +K3 + · · ·+KN+1 +RN+2 +ON+3,

where Ki ∈ Di commutes with |ẑ1|2 and where RN+2 ∈ DN+2.
Let τ ′ ∈ DN+2. A computation provides:

eih
−1adτN+τ′ (H0 + γ) = H0 +K3 + · · ·+KN+1 +KN+2 +ON+3,

with:

KN+2 =RN+2+B(g−1(ẑ2))i~−1adτ ′ |ẑ1|2 =RN+2−B(g−1(ẑ2))i~−1ad|ẑ1|2τ
′,

where we have used

i~−1adτ ′H0 = B(g−1(ẑ2))i~−1adτ ′ |ẑ1|2 +ON+4.

We can write:

RN+2 = KN+2 +B(g−1(ẑ2))i~−1ad|ẑ1|2τ
′.

Since B(g−1(ẑ2)) 6= 0, we deduce the existence of τ ′ and KN+2 such that
KN+2 commutes with |ẑ1|2. Note that i~−1ad|ẑ1|2 = {|ẑ1|2, ·}. �

2.4. Proof of Theorem 1.6

Since the formal series κ given by Proposition 2.7 commutes with |ẑ1|2,
we can write it as a polynomial in |ẑ1|2:

κ =
∑
k>0

∑
l+m=k

~lcl,m(ẑ2)|ẑ1|2m.

This formal series can be reordered by using the monomials (|ẑ1|2)?m for
the product law ?:

κ =
∑
k>0

∑
l+m=k

~lc?l,m(ẑ2)(|ẑ1|2)?m.

Thanks to the Borel lemma, there exists a smooth function with com-
pact support f?(~, |ẑ1|2, ẑ2) such that the Taylor expansion with respect to
(~, |ẑ1|2) of f?(~, |ẑ1|2, ẑ2) is given by κ and:

(2.8) σT,w (Opw~ (f?(~, I~, ẑ2))) = κ,
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where σT,w means that we consider the formal Taylor series of the Weyl
symbol with respect to (~, ẑ1). Here, the operator Opw~ (f?(~, I~, ẑ2)) has to
be understood as the Weyl quantization with respect to ẑ2 of an operator
valued symbol. We can write it in the form:

Opw~ f?(~, I~, ẑ2) = C0~ +H0 + Opw~ f̃?(~, I~, ẑ2),

where H0
~ = Opw~ (H0) and σT,w(Opw~ (f̃?(~, I~, ẑ2))) is in O4. Thus, given

any η > 0, we may choose the support of f? small enough in order to have,
for all ψ ∈ C∞0 (R2),

(2.9) |〈Opw~ f̃?(~, I~, ẑ2)ψ,ψ〉| 6 η‖I1/2
~ ψ‖2.

Moreover we can also introduce a smooth symbol a~ with compact sup-
port such that σT,w(a~) = τ . Using (2.7) and applying the Egorov theorem
(see [23, Theorems 5.5.5 and 5.5.9], [30] or [38]), we can find an invertible
Fourier Integral Operator V~, which is microlocally unitary and such that:

V ∗~H~,AV~ = C0~ +H0
~ + Opw~ (r~),

so that σT,w (Opw~ (r~)) = γ ∈ O3. In fact, one can choose V~ such that
the subprincipal symbol is preserved by conjugation (see for instance [18,
Appendix A]), which implies that C0 = 0(2) . It remains to use Proposi-
tion 2.7 and again the Egorov theorem to notice that ei~−1Opw~ (a~)Opw~ (r~)
e−i~

−1Opw~ (a~) is a pseudo-differential operator such that the formal Tay-
lor series of its symbol is κ. Therefore, recalling (2.8), we have found a
microlocally unitary Fourier Integral Operator U~ such that:

(2.10) U∗~H~,AU~ = H0
~ + Opw~

(
f̃?(~, I~, ẑ2)

)
+R~,

where R~ is a pseudo-differential operator such that σT,w(R~) = 0. It
remains to prove the division property expressed in the last statement
of item (3) of Theorem 1.6. By the Morse Lemma, there exists in a fixed
neighborhood of z1 = 0 in R4 a (non symplectic) change of coordinates z̃1
such that d0 = c(z2) |z̃1|2. It is enough to prove the result in this microlocal
neighborhood. Now, for any N > 1, we proceed by induction. We assume
that we can write R~ in the form:

R~ = Opw~
(
s0 + ~s1 + · · ·+ ~ksk

)
DN

~ +O(~k+1),

with symbols sj which vanish at infinite order with respect to ẑ1. We look
for sk+1 such that:

R~ = Opw~
(
s0 + ~s1 + · · ·+ ~ksk + ~k+1sk+1

)
DN

~ +O(~k+2)R̃~,k.

(2)We give another proof of this fact in Remark 2.8 below.
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We are reduced to find sk+1 such that:

r̃0,k = dN0 sk+1.

Since r̃0,k vanishes at any order at zero we can find a smooth function φk
such that:

r̃0,k = |z̃1|2Nφ.

We have sk+1(z̃1, z2) = φk(z̃1,z2)
c(z2)N .

This ends the proof of Theorem 1.6.

Remark 2.8. — It is well known that (see [16, Theorem 1.1]), when
B > 0, the smallest eigenvalue λ1(~) of H~,A has the following asymptotics

λ1(~) ∼ ~ min
q∈R2

B(q).

We will see in Section 4.1 that the corresponding eigenfunctions are mi-
crolocalized on Σ at the minima of B. Therefore the normal form would
imply, by a variational argument, that

(2.11) λ1(~) > C0~ + µ1(~) + o(~),

where µ1(~) is the smallest eigenvalue of N~ := H0
~ + Opw~

(
f̃?(~, I, z2)

)
.

Similarly, we will see in Section 4.2 that the lowest eigenfunctions of N~
are also microlocalized in ẑ1 and ẑ2, and therefore

λ1(~) ∼ C0~ + µ1(~).

By Gårding’s inequality and point (4) of Theorem 1.6, µ1(~) ∼ ~minB.
Comparing with (2.11), we see that C0 = 0.

3. Long time dynamics at low energy

The goal of this section is to prove Theorems 1.2 and 1.3. We shall rely
on the following localization lemma.

We work in the open set Ω equipped with the coordinates (z1, z2) given by
the normal form of Theorem 1.1; thus, we may write H(z1, z2) = K + R,
where K = |z1|2 f(z2, |z1|2) and the Taylor series of R with respect to
z1 vanishes for all z2. On Ω, the magnetic field B has a fixed sign. For
notational simplicity we may assume that B > 0. We denote by ϕtH the
Hamiltonian flow of H, I = |z1|2, and I(t) := I ◦ ϕtH . We also denote
z2(t) := z2 ◦ ϕtH .

ANNALES DE L’INSTITUT FOURIER



GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS 157

3.1. Confinement Lemma

Lemma 3.1. — Let Cf > 0, M > 0 be such that

(3.1) f(z2, 0) > Cf , ∀ |z2| > M.

Let 0 < c̃0 < c0 < C0 < C̃0 < Cf . For any ε > 0 we define the bounded
open set

(3.2) Uε :=
{

(z1, z2); |z1|2 <
ε

2 , c0 < f(z2, 0) < C0

}
,

which is contained in the compact set

(3.3) Vε :=
{

(z1, z2); |z1|2 6 ε, c̃0 6 f(z2, 0) 6 C̃0

}
.

Let

Tε := sup{T > 0; ∀t ∈ [−T, T ], ϕtH exists and (z1(t), z2(t)) ∈ Vε
for any starting point in Uε}.

Then for any N > 0, there exists ε0 > 0 and a constant C > 0 such that

∀ε 6 ε0, Tε >
C

εN
.

Proof. — Let N > 1/2. Since Vε is compact, we have Tε > 0; moreover,
there exists ε0 such that Uε ⊂ Ω for all ε 6 ε0. Since the z1-Taylor series of
R vanishes, we can write R = INRN , where RN is smooth. Thus

{H, I} = IN{RN , I},

which implies
|{H, I}| 6 2IN+1/2 ‖∇RN‖ .

Therefore, we get, on Uε,

∀ |t| < Tε,

∣∣∣∣ ddtI(t)
∣∣∣∣ =

∣∣{H, I} ◦ ϕtH ∣∣ 6 2CNI(t)N+1/2,

where CN := supVε0
‖∇RN‖. By integration, we get

(3.4) ∀ |t| < T, |I(t)− I(0)| 6 2CN |t| εN+1/2.

We apply a similar argument for K(t) := K ◦ ϕtH . We have {H,K} =
{INRN ,K} = IN{RN ,K}. Thus we get, on Uε,∣∣∣∣ ddtK(t)

∣∣∣∣ 6 IN+1/2C ′N ,

with C ′N := 3 supVε0
|{RN ,K/I}|. Therefore |K(t)−K(0)| 6 C ′NIN+1/2 |t|,

which implies, since K = If(z2, I),

(3.5) |f(z2(t), I(t))− f(z2(0), I(0))| 6 C ′NIN−1/2 |t| 6 C ′N εN−1/2 |t| .
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We may write f(z2, I) = f(z2, 0) + If̃ , for some smooth function f̃ .
Let us fix ` > 0 such that C0+ Cf−C0

` < C̃0 and c0− Cf−C0
` > c̃0. Assume

that ε0 is small enough so that

(3.6) sup
Vε0

f̃ 6 (Cf − C0)/(2`ε0).

Assume by contradiction that there exists ε 6 ε0 such that

(3.7) C ′N ε
N−1/2Tε 6 (Cf − C0)/(2`),

and

(3.8) 2CN εN+1/2Tε 6 ε/3.

By (3.2), Equations (3.8) and (3.4) imply I(t) 6 ε/2 + ε/3 = 5ε/6. Equa-
tions (3.7) and (3.5) imply f(z2(t), I(t)) 6 C0 +(Cf −C0)/(2`), and hence,
by (3.6),

f(z2(t), 0) 6 C̃0 −
(
C̃0 − C0 −

Cf − C0

`

)
= C̃1 < C̃0 < Cf .

In the same way we find

f(z2(t), 0) > c0 −
Cf − C0

`
= c̃1 > c̃0.

Now we remark that, by definition of Tε, the flow ϕtH is uniformly bounded
for all |t| < Tε; therefore, there exists T ′ > Tε for which the flow ϕtH is
defined for all |t| < T ′. Since I(t) 6 5ε/6 and c̃1 6 f(z2(t), 0) 6 C̃1 for
all t < Tε, we can find T ′ > Tε such that z(t) ∈ Vε which contradicts the
definition of Tε.
Therefore one of (3.7) or (3.8) must be false. In both cases, we find a

constant C > 0 such that

∀ε < ε0, Tε >
C

εN−1/2 ,

which gives the result. �

3.2. Proof of Theorems 1.2 and 1.3

The confining assumption on B implies (3.1) — with different constants.
Hence, we may apply Lemma 3.1 to H and K which implies that the flows
ϕtH and ϕtK remain in the region Vε for times of order ε−N , and starting
position in Uε. This proves the first point of Theorem 1.2.
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Now, let N ′ > N . Writing H = K + IN
′
RN ′ , we see that the Hamilton-

ian vector fields XH and XK differ by O(εN ′−1/2). Let F(t) = ϕtH − ϕtK ;
dF/dt = XH ◦ ϕtH −XK ◦ ϕtK . By Taylor, we get

dF
dt

= XH−K ◦ ϕtH +O(ϕtK − ϕtH),

where the O is given by the derivatives of XK and thus is uniform for
|t| < Tε. Thus there exist constants C1, C2 such that∥∥∥∥dFdt

∥∥∥∥ 6 C1ε
N ′−1/2 + C2 ‖F(t)‖ .

Here we use ‖·‖ for the Euclidean norm in R4. Therefore, since F(0) = 0,
the Gronwall lemma provides

‖F(t)‖ 6 C1ε
N ′−1/2

C2
(eC2|t| − 1).

Thus, if |t| 6 C3 |ln ε| we get ‖F(t)‖ 6 C1C
−1
2 εN

′−1/2−C2C3 , which proves
(1.8) since N ′ is arbitrary, thereby establishing Theorem 1.2.
The naive estimate used above in the proof of Theorem 1.2 cannot yield

the stronger conclusion of Theorem 1.3, because it does not take into ac-
count the commutation {H,K} = 0. For this we consider the composition
ϕtK ◦ϕ

−t
H . Notice that, thanks to Lemma 3.1, ϕ−tH sends Uε into Vε for times

of order O(ε−N ), and that Vε is globally invariant by ϕtK for all times. Thus,
the composition ϕtK ◦ ϕ

−t
H is well defined on Uε and takes values in Vε, for

times of order O(ε−N ).
Let us fix an arbitrary smooth function z : R4 → R and introduce, on

Uε, the family of functions

D(t) := z ◦ ϕtK ◦ ϕ−tH .

Using, among others, the equivariance of the Poisson bracket under sym-
plectomorphism, we get
dD(t)
dt

= −{H,D}+ {K ◦ ϕ−tH ,D} = {−R ◦ ϕ−tH ,D} = −{R, z ◦ ϕtK} ◦ ϕ−tH .

The goal is now to estimate {R, z ◦ ϕtK} on Vε. We have

XK = fXI + IXf(z2,I),

and since {I, f(z2, I)} = 0, the flow of K can be written as

ϕtK = ϕtfI ◦ ϕ
It
f(z2,I),

and I is constant along this flow. We use now the assumptions of Theo-
rem 1.3; thus, dz2f(z2, 0) does not vanish on the annulus c0 6 f(z2, 0) 6 C0,
where J = [c0, C0]. This implies that the same holds for dz2f(z2, I), when

TOME 65 (2015), FASCICULE 1



160 Nicolas RAYMOND & San VŨ NGO. C

I < ε0 is small enough. Therefore, for each value of I one can apply the
action-angle theorem to the Hamiltonian z2 7→ f(z2, I): there exists a sym-
plectic change of coordinates (r, θ) = ψI(z2), with (r, θ) ∈ R × S1, such
that

ϕtf(z2,I)(r, θ) = (r, θ + tg(I, f)),
where g is smooth. This yields the following formula for the flow of K in
the variables (z1, r, θ):

ϕtK(z1, r, θ) = (e−2itfz1, r, θ + tIg(I, f)).

From this we obtain the estimate for the spacial derivative:∥∥dϕtK∥∥ 6 C(|t|+ 1) on Vε,

for some constant C > 0 (involving the C1-norms of f and g on Vε), and
for any t ∈ R. Now, as above, we write R = IN

′
RN ′ and get

{R, z ◦ ϕtK} = IN
′
{RN ′ , z ◦ ϕtK}+N ′RN ′I

N ′−1{I, z ◦ ϕtK},

hence ∣∣{R, z ◦ ϕtK}∣∣ 6 CN ′IN ′−1/2 ∥∥dϕtK∥∥ 6 C̃N ′IN ′−1/2(1 + |t|).

Thus, if |t| 6 Tε = O(ε−N ), we obtain, on Uε,

|D(t)−D(0)| 6 ĈN,N ′IN
′−N−1/2.

Taking z to be any coordinate function, we get, for m ∈ Uε,∥∥ϕtK ◦ ϕ−tH (m)−m
∥∥ 6 CN,N ′εN ′−N−1/2.

Notice that an estimate of the same kind is also valid for m ∈
◦
V ε. For any

m′ ∈ Uε we may let m = ϕtH(m′), which yields∥∥ϕtK(m′)− ϕtH(m′)
∥∥ 6 CN,N ′εN ′−N−1/2.

This gives the conclusion of Theorem 1.3 by choosing N ′ large enough.

4. Spectral theory

This section is devoted to the proof of Theorem 1.5. The main idea is
to use the eigenfunctions of H~,A and N~ as test functions in the pseudo-
differential identity (1.10) given in Theorem 1.6 and to apply the variational
characterization of the eigenvalues given by the min-max principle. In or-
der to control the remainders we shall prove the microlocalization of the
eigenfunctions ofH~,A and N~ thanks to the confinement assumption (1.9).
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4.1. Localization and microlocalization
of the eigenfunctions of H~,A

The space localization of the eigenfunctions of H~,A, which is the quan-
tum analog of Theorem 1.2, is a consequence of the so-called Agmon esti-
mates.

Proposition 4.1. — Let us assume (1.9). Let us fix 0 < C1 < C̃1 and
α ∈ (0, 1

2 ). There exist C, ~0, ε0 > 0 such that for all 0 < ~ 6 ~0 and for all
eigenpair (λ, ψ) of H~,A such that λ 6 C1~, we have:∫

|eχ(q)~−α|q|ψ|2 dq 6 C‖ψ‖2,

where χ is zero for |q| 6 M0 and 1 for |q| > M0 + ε0. Moreover, we also
have the weighted H1 estimate:∫

|eχ(q)~−α|q|(−i~∇−A)ψ|2 dq 6 C~‖ψ‖2.

Proof. — Let us denote by q~,A the quadratic form associated with the
magnetic Laplacian H~,A. We write the Agmon formula (see [1, 2]) for the
eigenpair (λ, ψ) with λ 6 C1~:

q~,A(eΦψ) = λ‖eΦψ‖+ ~2‖∇ΦeΦ‖2.

We recall that:
q~,A(eΦψ) >

∫
~B(q)|eΦψ|2 dq

so that: ∫ (
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq 6 0.

We split this integral into two parts:∫
|q|>M0

(
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq

6
∫
|q|6M0

(
−~B(q) + C1~ + ~2‖∇Φ‖2

)
|eΦψ|2 dq.

Let us choose Φ:
Φ = χ(q)~−α|q|.

We get: ∫
|q|>M0

(
~B(q)− C1~− ~2‖∇Φ‖2

)
|eΦψ|2 dq 6 Ch‖ψ‖2.
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Then we have:∫
|q|>M0

(
~C1 − C1~− C̃~2−2α) |eΦψ|2 dq 6 C~‖ψ‖2.

We infer that:∫
|q|>M0

|eΦψ|2 dq 6 C‖ψ‖2,
∫
|eχ(q)~−α|q|ψ|2 dq 6 C‖ψ‖2

and then:
q~,A(eΦψ) 6 C~‖ψ‖2.

�

Remark 4.2. — This estimate is interesting when |x| > M0 + ε0. In
this region, we deduce by standard elliptic estimates that ψ = O(~∞) in
suitable norms (see for instance [11, Proposition 3.3.4] or more recently [28,
Proposition 2.6]). Therefore, the eigenfunctions are localized in space in the
ball of center (0, 0) and radius M0 + ε0.
We shall now prove the microlocalization of the eigenfunctions near the

zero set of the magnetic Hamiltonian Σ.
Proposition 4.3. — Let us assume (1.9). Let us fix 0 < C1 < C̃1 and

consider δ ∈
(
0, 1

2
)
. Let (λ, ψ) be an eigenpair of H~,A with λ 6 C1~. Then,

we have:
ψ = χ1

(
~−2δH~,A

)
χ0(q)ψ +O(~∞),

where χ0 is smooth cutoff function supported in a compact set in the ball
of center (0, 0) and radius M0 + ε0 and where χ1 a smooth cutoff function
being 1 near 0.

Proof. — In view of Proposition 4.1, it is enough to prove that

(4.1)
(
1− χ1

(
~−2δH~,A

))
(χ0(q)ψ) = O(h∞).

By the space localization, we have:

H~,A(χ0(q)ψ) = λχ0(q)ψ +O(~∞).

Then, we get:(
1−χ1

(
~−2δH~,A

))
H~,A(χ0(q)ψ)=λ

(
1−χ1

(
~−2δH~,A

))
(χ0(x)ψ)+O(~∞).

This implies:

~2δ‖
(
1− χ1

(
~−2δH~,A

))
(χ0(q)ψ)‖2

6 q~,A
((

1− χ1
(
~−2δH~,A

))
(χ0(q)ψ)

)
6 C1~‖

(
1− χ1

(
~−2δH~,A

))
(χ0(q)ψ)‖2 +O(~∞)‖ψ‖2.
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Since δ ∈
(
0, 1

2
)
, we deduce (4.1). �

4.2. Microlocalization of the eigenfunctions of N~

The next two propositions state the microlocalization of the eigenfunc-
tions of the normal form N~.

Proposition 4.4. — Let us consider the pseudo-differential operator:

N~ = H0
~ + Opw~ f̃?(~, I~, ẑ2).

We assume the confinement assumption (1.9). We can consider M̃0 > 0
such that B ◦ϕ−1(ẑ2) > C̃1 for |ẑ2| > M̃0. Let us consider C1 < C̃1 and an
eigenpair (λ, ψ) of N~ such that λ 6 C1~. Then, for all ε0 > 0 and for all
smooth cutoff function χ supported in |ẑ2| > M̃0 + ε0, we have:

Opw~ (χ(ẑ2))ψ = O(~∞).

Proof. — We notice that:

N~Opw~ (χ(ẑ2))ψ = λOpw~ (χ(ẑ2))ψ + ~R~ψ,

where the symbol of R~ is supported in compact slightly smaller than the
support of χ. We may consider a cutoff function χ which is 1 on a small
neighborhood of this support. We get:

〈N~Opw~ (χ(ẑ2))ψ,Opw~ (χ(ẑ2))ψ〉

6 λ‖Opw~ (χ(ẑ2))ψ‖2 + C~‖Opw~
(
χ(ẑ2)

)
ψ‖‖Opw~ (χ(ẑ2))ψ‖.

Thanks to the Gårding inequality, we have:

〈H0
~Opw~ (χ(ẑ2))ψ,Opw~ (χ(ẑ2))ψ〉 >(C̃1 − C~)‖Opw~ (χ(ẑ2)) I1/2

~ ψ‖2

>(C̃1 − C~)~‖Opw~ (χ(ẑ2))ψ‖2.

We can consider Opw~ f̃?(~, I~, ẑ2) as a perturbation of H0
~ (see (2.9)). Since

C1 < C̃1 we infer that:

‖Opw~ (χ(ẑ2))ψ‖ 6 C~‖Opw~
(
χ(ẑ2)

)
ψ‖.

Then a standard iteration argument provides Opw~ (χ(ẑ2))ψ = O(~∞). �

Proposition 4.5. — Keeping the assumptions and the notation of Pro-
position 4.4, we consider δ ∈

(
0, 1

2
)
and an eigenpair (λ, ψ) of N~ with

λ 6 C1~. Then, we have:

ψ = χ1
(
~−2δI~

)
Opw~ (χ0(ẑ2))ψ +O(~∞),
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for all smooth cutoff function χ1 supported in a neighborhood of zero and
all smooth cutoff function χ0 being 1 near zero and supported in the ball
of center 0 and radius M̃0 + ε0.

Proof. — The proof follows the same lines as for Proposition 4.4 and
Proposition 4.3. �

4.3. Proof of Theorem 1.5

As we proved in the last section, each eigenfunction of H~,A or N~ is
microlocalized. Nevertheless we do not know yet if all the functions in the
range of the spectral projection below C1h are microlocalized. This depends
on the rank of the spectral projection. The next two lemmas imply that
this rank does not increase more than polynomially in ~−1 (so that the
functions lying in the range of the spectral projection are microlocalized).
We will denote by N(M, λ) the number of eigenvalues of M less than or
equal to λ.

Lemma 4.6. — There exists C > 0 such that for all ~ > 0, we have:

N(H~,A, C1~) 6 C~−1.

Proof. — We notice that:

N(H~,A, C1~) = N(H1,~−1A, C1~−1)

and that, for all ε ∈ (0, 1):

q1,~−1A(ψ) > (1− ε)q1,~−1A(ψ) + ε

∫
R2

B(x)
~
|ψ(x)|2 dx

so that we infer:

N(H~,A, C1~) 6 N(H1,~−1A + ε(1− ε)−1~−1B, (1− ε)−1C1~−1).

Then, the diamagnetic inequality (3) jointly with a Lieb-Thirring estimate
(see the original paper [21]) provides for all γ > 0 the existence of Lγ,2 > 0
such that for all ~ > 0 and λ > 0:
N(H1,~−1A+ε(1−ε)−1~−1,λ)∑

j=1

∣∣λ̃j(~)−λ
∣∣γ6Lγ,2∫

R2
(ε(1−ε)−1~−1B(x)−λ)1+γ

− dx.

(3)See [5, Theorem 1.13] and the link with the control of the resolvent kernel in [20, 31].
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We apply this inequality with λ = (1 + η)(1− ε)−1C1~−1, for some η > 0.
This implies that:
Nε,~,η∑
j=1

∣∣λ̃j(~)− λ
∣∣γ 6 Lγ,2 ∫

B(x)6(1+η)C1/ε

(λ− ε(1− ε)−1~−1B(x))1+γ dx

with Nε,~,η := N(H1,~−1A + ε(1− ε)−1~−1B, (1− ε)−1C1~−1), so that:

(η(1− ε)−1C1~−1)γNε,~,η

6 Lγ,2(~(1− ε))−1−γ
∫
B(x)6 (1+η)C1

ε

((1 + η)C1 − εB(x))1+γ dx.

For η small enough and ε is close to 1, we have (1 + η)ε−1C1 < C̃1 so that
the integral is finite, which gives the required estimate. �

Lemma 4.7. — There exists C > 0 and ~0 > 0 such that

for all ~ ∈ (0, ~0), N(N~, C1~) 6 C~−1.

Proof. — Let ε ∈ (0, 1). By point (4) of Theorem 1.6, it is enough to
prove that N(H0

~,
C1~
1−ε ) 6 Ch

−1. The eigenvalues and eigenfunctions of H0
~

can be found by separation of variables: H0
~ = I~ ⊗ Opw~ (B ◦ ϕ−1), where

I~ acts on L2(Rx1) and B̂~ := Opw~ (B ◦ ϕ−1) acts on L2(Rx2). Thus,

N(H0
~, ~C1,ε) = #{(n,m) ∈ (N∗)2; (2n− 1)~γm(~) 6 ~C1,ε},

where C1,ε := C1
1−ε , and γ1(~) 6 γ2(~) 6 · · · are the eigenvalues of B̂~. A

simple estimate gives

N(H0
~, C1,ε) 6

(
1 +

⌊
1
2 + C1,ε

2γ1(~)

⌋)
·#{m ∈ N∗; γm(~) 6 C1,ε}.

If ε is small enough, C1,ε < C̃1, and then Weyl asymptotics (see for instance
[6, Chapter 9]) for B̂~ gives

N(B̂~, C1,ε) ∼
1

2π~vol{B ◦ ϕ
−1 6 C1,ε},

and Gårding’s inequality implies γ1(~) > min
q∈R2

B −O(~), which finishes the
proof. �

Remark 4.8. — With additional hypotheses on the magnetic field, it has
been proved that theO(~−1) estimate is in fact optimal: see for instance [33]
and [32, Remark 1]. Actually, it would likely follow from Theorem 1.5 and
Theorem 1.6 that these Weyl asymptotics hold in general under the con-
finement assumption.

TOME 65 (2015), FASCICULE 1



166 Nicolas RAYMOND & San VŨ NGO. C

Let us now consider λ1(~), · · · , λN(H~,A,C1~)(~) the eigenvalues of H~,A
below C1~. We can consider corresponding normalized eigenfunctions ψj
such that : 〈ψj , ψk〉 = δkj . We introduce the N -dimensional space:

V = χ1
(
~−2δH~,A

)
χ0(q) span

16j6N
ψj .

Let us bound from above the quadratic form of N~ denoted by Q~. For
ψ ∈ span

16j6N
ψj , we let:

ψ̃ = χ1
(
~−2δH~,A

)
χ0(q)ψ

and we can write:

Q~(U∗~ ψ̃) = 〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈U~U

∗
~H~,AU~U

∗
~ ψ̃, ψ̃〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉.

Since U~ is microlocally unitary, the elementary properties of the pseudo-
differential calculus yield:

〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈H~,Aψ̃, ψ̃〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉+O(~∞)‖ψ̃‖2.

Then, thanks to Proposition 4.3 and Lemma 4.6 we may replace ψ̃ by ψ
up to a remainder of order O(~∞)‖ψ̃‖:

〈U~N~U
∗
~ ψ̃, ψ̃〉 = 〈H~,Aψ,ψ〉 − 〈U~R~U

∗
~ ψ̃, ψ̃〉+O(~∞)‖ψ̃‖2

so that:

〈U~N~U
∗
~ ψ̃, ψ̃〉 6 λN (~)‖ψ‖2 + |〈U~R~U

∗
~ ψ̃, ψ̃〉|+O(~∞)‖ψ̃‖2

and:

〈U~N~U
∗
~ ψ̃, ψ̃〉 6 λN (~)‖U∗~ ψ̃‖2 + |〈U~R~U

∗
~ ψ̃, ψ̃〉|+O(~∞)‖U∗~ ψ̃‖2.

Let us now estimate the remainder term U~R~U
∗
~ ψ̃. We have:

U~R~U
∗
~ ψ̃ = U~R~U

∗
~χ1

(
~−2δH~,A

)
ψ̃

= U~R~U
∗
~χ1

(
~−2δH~,A

)
(U∗~ )−1U∗~ ψ̃ +O(~∞)‖U∗~ ψ̃‖,

where χ1 has a support slightly bigger then the one of χ1. We notice that

U∗~χ1
(
~−2δH~,A

)
(U∗~ )−1 = χ1

(
~−2δU∗~H~,A(U∗~ )−1) .

Let us now apply (1.11) with D~ = U∗~H~,A(U∗~ )−1 to get:

R~ = S~,M (U∗~H~,A(U∗~ )−1)M +KN +O(~∞)

so that:
‖U~R~U

∗
~χ1

(
~−2δH~,A

)
ψ̃‖ = O(~2Mδ)‖U∗~ ψ̃‖2.

We infer that:

Q~(U∗~ ψ̃) 6 λN (~)‖U∗~ ψ̃‖2 +O(~2Mδ)‖U∗~ ψ̃‖2.
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From the min-max principle, it follows that:

µN (~) 6 λN (~) +O(~2Mδ).

The converse inequality follows from a similar proof, using Proposition 4.5
and Lemma 4.7. This ends the proof of Theorem 1.5.
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[4] L. Charles & S. Vũ Ngo.c, “Spectral asymptotics via the semiclassical Birkhoff
normal form”, Duke Math. J. 143 (2008), no. 3, p. 463-511.

[5] H. L. Cycon, R. G. Froese, W. Kirsch & B. Simon, Schrödinger operators with
application to quantum mechanics and global geometry, study ed., Texts and Mono-
graphs in Physics, Springer-Verlag, Berlin, 1987, x+319 pages.

[6] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Lon-
don Mathematical Society Lecture Note Series, vol. 268, Cambridge University
Press, Cambridge, 1999, xii+227 pages.

[7] N. Dombrowski & N. Raymond, “Semiclassical analysis with vanishing magnetic
fields”, J. Spectr. Theory 3 (2013), no. 3, p. 423-464.

[8] S. Fournais & B. Helffer, “Accurate eigenvalue asymptotics for the magnetic
Neumann Laplacian”, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 1, p. 1-67.

[9] ———, Spectral methods in surface superconductivity, Progress in Nonlinear Dif-
ferential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA,
2010, xx+324 pages.

[10] S. Fournais & M. Persson, “Strong diamagnetism for the ball in three dimen-
sions”, Asymptot. Anal. 72 (2011), no. 1-2, p. 77-123.

[11] B. Helffer, Semi-classical analysis for the Schrödinger operator and applica-
tions, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988,
vi+107 pages.

[12] B. Helffer & Y. A. Kordyukov, “Spectral gaps for periodic Schrödinger operators
with hypersurface magnetic wells: analysis near the bottom”, J. Funct. Anal. 257
(2009), no. 10, p. 3043-3081.

[13] ———, “Semiclassical spectral asymptotics for a two-dimensional magnetic
Schrödinger operator: the case of discrete wells”, in Spectral theory and geomet-
ric analysis, Contemp. Math., vol. 535, Amer. Math. Soc., Providence, RI, 2011,
p. 55-78.

TOME 65 (2015), FASCICULE 1



168 Nicolas RAYMOND & San VŨ NGO. C
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