On the torsion of the first direct image of a locally free sheaf
[Sur la torsion de la première image directe d’un faisceau localement libre]
Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 101-136.

Soit π:MB un submersion propre entre variétés complexes, et soit un fibré holomorphe sur M. Nous étudions et décrivons explicitement le sous-faisceau de torsion Tors(R 1 π * ()) de la première image directe R 1 π * () en supposant que R 0 π * ()=0. Nous discutons deux applications des résultats obtenus  : la première concerne le lieu des points où une famille génériquement verselle de surfaces complexes est non-verselle. La deuxième application est un résultat d’annulation pour H 0 (Tors(R 1 π * ())) dans une situation concrète liée à notre programme pour démontrer l’existence des courbes sur les surfaces de la classe VII.

Let π:MB be a proper holomorphic submersion between complex manifolds and a holomorphic bundle on M. We study and describe explicitly the torsion subsheaf Tors(R 1 π * ()) of the first direct image R 1 π * () under the assumption R 0 π * ()=0. We give two applications of our results. The first concerns the locus of points in the base of a generically versal family of complex surfaces where the family is non-versal. The second application is a vanishing result for H 0 (Tors(R 1 π * ())) in a concrete situation related to our program to prove existence of curves on class VII surfaces.

DOI : 10.5802/aif.2926
Classification : 32C35, 32G05, 32J15
Keywords: coherent sheaves, higher direct images, complex surfaces, versal deformation, torsion subsheaf
Mot clés : Faisceaux cohérents, images directes supérieures, surfaces complexes, déformation verselle, sous-faisceau de torsion

Teleman, Andrei 1

1 Aix-Marseille Université CNRS, Centrale Marseille, I2M, UMR 7373 13453 Marseille (France)
@article{AIF_2015__65_1_101_0,
     author = {Teleman, Andrei},
     title = {On the torsion of the first direct image of a locally free sheaf},
     journal = {Annales de l'Institut Fourier},
     pages = {101--136},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.5802/aif.2926},
     zbl = {06496535},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2926/}
}
TY  - JOUR
AU  - Teleman, Andrei
TI  - On the torsion of the first direct image of a locally free sheaf
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 101
EP  - 136
VL  - 65
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2926/
DO  - 10.5802/aif.2926
LA  - en
ID  - AIF_2015__65_1_101_0
ER  - 
%0 Journal Article
%A Teleman, Andrei
%T On the torsion of the first direct image of a locally free sheaf
%J Annales de l'Institut Fourier
%D 2015
%P 101-136
%V 65
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2926/
%R 10.5802/aif.2926
%G en
%F AIF_2015__65_1_101_0
Teleman, Andrei. On the torsion of the first direct image of a locally free sheaf. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 101-136. doi : 10.5802/aif.2926. https://aif.centre-mersenne.org/articles/10.5802/aif.2926/

[1] Bănică, Constantin; Stănăşilă, Octavian Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucharest; John Wiley & Sons, London-New York-Sydney, 1976, pp. 296 (Translated from the Romanian) | MR | Zbl

[2] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Springer-Verlag, Berlin, 2004, pp. xii+436 | MR | Zbl

[3] Bingener, Jürgen Offenheit der Versalität in der analytischen Geometrie, Math. Z., Volume 173 (1980) no. 3, pp. 241-281 | DOI | MR | Zbl

[4] Bourbaki, N. Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, Springer-Verlag, Berlin, 2007, pp. viii+216 (Reprint of the 1980 original) | Zbl

[5] Demailly, J.-P. Complex Analytic and Differential Geometry (www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[6] Dloussky, Georges Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.) (1984) no. 14, pp. ii+120 | Numdam | MR | Zbl

[7] Dloussky, Georges From non-Kählerian surfaces to Cremona group of 2 (), Complex Manifolds, Volume 1 (2014) no. Issue 1, pp. 1-33 | MR

[8] Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Class VII 0 surfaces with b 2 curves, Tohoku Math. J. (2), Volume 55 (2003) no. 2, pp. 283-309 | DOI | MR | Zbl

[9] Douady, A. Le problème des modules locaux pour les espaces -analytiques compacts, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), pp. 569-602 | Numdam | MR | Zbl

[10] Douady, A.; Verdier, J. L. Sém. Géom. Anal. (1974) (École Norm. Sup., 1971–1972, Astérisque 16, Soc. Math. France, Paris) | MR

[11] Eisenbud, David; Levine, Harold I. An algebraic formula for the degree of a C map germ, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 19-44 | DOI | MR | Zbl

[12] Enoki, Ichiro Surfaces of class VII 0 with curves, Tôhoku Math. J. (2), Volume 33 (1981) no. 4, pp. 453-492 | DOI | MR | Zbl

[13] Fantechi, Barbara Stacks for everybody, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, Basel, 2001, pp. 349-359 | MR | Zbl

[14] Fischer, Gerd Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976, pp. vii+201 | MR | Zbl

[15] Flenner, Hubert Ein Kriterium für die Offenheit der Versalität, Math. Z., Volume 178 (1981) no. 4, pp. 449-473 | DOI | MR | Zbl

[16] Godement, Roger Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973, pp. viii+283 | MR | Zbl

[17] Grauert, Hans; Remmert, Reinhold Coherent analytic sheaves, 265, Springer-Verlag, Berlin, 1984, pp. xviii+249 | MR | Zbl

[18] Hoffmann, Norbert The moduli stack of vector bundles on a curve, Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 387-394 | MR | Zbl

[19] Kaup, Ludger; Kaup, Burchard Holomorphic functions of several variables, de Gruyter Studies in Mathematics, 3, Walter de Gruyter & Co., Berlin, 1983, pp. xv+349 | MR | Zbl

[20] Kobayashi, Shoshichi Differential geometry of complex vector bundles, 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, pp. xii+305 | MR | Zbl

[21] Kodaira, K.; Spencer, D. C. A theorem of completeness for complex analytic fibre spaces, Acta Math., Volume 100 (1958), pp. 281-294 | DOI | MR | Zbl

[22] Lübke, Martin; Teleman, Andrei The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995, pp. x+254 | MR | Zbl

[23] Meersseman, L. The Teichmüller and Riemann spaces as analytic stacks and groupoids (2013) (preprint arXiv:1311.4170)

[24] Nakamura, Iku On surfaces of class VII 0 with curves, Invent. Math., Volume 78 (1984) no. 3, pp. 393-443 | DOI | MR | Zbl

[25] Nakamura, Iku Towards classification of non-Kählerian surfaces, Sugaku Expositions, Volume 2 (1989) no. 2, pp. 209-229 | Zbl

[26] Nakamura, Iku On surfaces of class VII 0 with curves, II, Tôhuku Mathematical Journal, Volume 42 (1990) no. 4, pp. 475-516 | DOI | MR | Zbl

[27] Oeljeklaus, Karl; Toma, Matei Logarithmic moduli spaces for surfaces of class VII, Math. Ann., Volume 341 (2008) no. 2, pp. 323-345 | DOI | MR | Zbl

[28] Remmert, R. Local theory of complex spaces, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 7-96 | MR | Zbl

[29] Teleman, Andrei A variation formula for the determinant line bundle. Compact subspaces of moduli spaces of stable bundles over class VII surfaces (arXiv:1309.0350 [math.CV])

[30] Teleman, Andrei Donaldson theory on non-Kählerian surfaces and class VII surfaces with b 2 =1, Invent. Math., Volume 162 (2005) no. 3, pp. 493-521 | DOI | MR | Zbl

[31] Teleman, Andrei The pseudo-effective cone of a non-Kählerian surface and applications, Math. Ann., Volume 335 (2006) no. 4, pp. 965-989 | DOI | MR | Zbl

[32] Teleman, Andrei Gauge theoretical methods in the classification of non-Kählerian surfaces, Algebraic topology—old and new (the Postnikov Memorial Volume) (Banach Center Publ.), Volume 85, Polish Acad. Sci. Inst. Math., Warsaw, 2009, pp. 109-120 | MR | Zbl

[33] Teleman, Andrei Instantons and holomorphic curves on class VII surfaces, Ann. of Math. (2), Volume 172 (2010) no. 3, pp. 1749-1804 | DOI | MR | Zbl

[34] Teleman, Andrei Dumitru Projectively flat surfaces and Bogomolov’s theorem on class VII 0 surfaces, Internat. J. Math., Volume 5 (1994) no. 2, pp. 253-264 | DOI | MR | Zbl

Cité par Sources :