Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots
Annales de l'Institut Fourier, Volume 65 (2015) no. 1, pp. 1-62.

We continue our investigation of spaces of long embeddings (long embeddings are high-dimensional analogues of long knots). In previous work we showed that when the dimensions are in the stable range, the rational homology groups of these spaces can be calculated as the homology of a direct sum of certain finite graph-complexes, which we described explicitly. In this paper, we establish a similar result for the rational homotopy groups of these spaces. We also put emphasis on the different ways the calculations can be done. In particular we describe three different graph-complexes computing these rational homotopy groups. We also compute the generating functions of the Euler characteristics of the summands in the homological splitting.

On continue notre étude des espaces de plongements longs (les plongements longs sont des analogues en dimension supérieure des nœuds longs). Dans notre travail précédent, on a montré que dans le cas où les dimensions sont dans le rang stable l’homologie rationnelle de ces espaces peut être calculée comme l’homologie d’un certain complexe de graphes que l’on a décrit explicitement. Dans ce travail, on établit un résultat similaire pour les groupes d’homotopie rationnelle de ces espaces. On met aussi un accent sur les différentes façons d’effectuer ces calculs. En particulier, on décrit trois complexes de graphes différents calculant les groupes d’homotopie en question. On calcule également les fonctions génératrices des caractéristiques eulériennes des termes d’une décomposition en somme directe des complexes calculant les groupes d’homologie.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2924
Classification: 57R40,  57R42,  55P48,  55P62,  18D50
Keywords: Spaces of embeddings, little discs operad, rational homotopy, graph-complexes
@article{AIF_2015__65_1_1_0,
     author = {Arone, Gregory and Turchin, Victor},
     title = {Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots},
     journal = {Annales de l'Institut Fourier},
     pages = {1--62},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.5802/aif.2924},
     zbl = {1329.57035},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2924/}
}
TY  - JOUR
TI  - Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 1
EP  - 62
VL  - 65
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2924/
UR  - https://zbmath.org/?q=an%3A1329.57035
UR  - https://doi.org/10.5802/aif.2924
DO  - 10.5802/aif.2924
LA  - en
ID  - AIF_2015__65_1_1_0
ER  - 
%0 Journal Article
%T Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots
%J Annales de l'Institut Fourier
%D 2015
%P 1-62
%V 65
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2924
%R 10.5802/aif.2924
%G en
%F AIF_2015__65_1_1_0
Arone, Gregory; Turchin, Victor. Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots. Annales de l'Institut Fourier, Volume 65 (2015) no. 1, pp. 1-62. doi : 10.5802/aif.2924. https://aif.centre-mersenne.org/articles/10.5802/aif.2924/

[1] Arnolʼd, V. I. The cohomology ring of the group of dyed braids, Mat. Zametki, Tome 5 (1969), pp. 227-231 | MR: 242196 | Zbl: 0277.55002

[2] Arone, Greg; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar Coformality and rational homotopy groups of spaces of long knots, Math. Res. Lett., Tome 15 (2008) no. 1, pp. 1-14 | Article | MR: 2367169 | Zbl: 1148.57033

[3] Arone, Gregory; Lambrechts, Pascal; Volić, Ismar Calculus of functors, operad formality, and rational homology of embedding spaces, Acta Math., Tome 199 (2007) no. 2, pp. 153-198 | Article | MR: 2358051 | Zbl: 1154.57026

[4] Arone, Gregory; Turchin, Victor On the rational homology of high-dimensional analogues of spaces of long knots, Geom. Topol., Tome 18 (2014) no. 3, pp. 1261-1322 | Article | MR: 3228453

[5] Bar-Natan, Dror On the Vassiliev knot invariants, Topology, Tome 34 (1995) no. 2, pp. 423-472 | Article | MR: 1318886 | Zbl: 0898.57001

[6] Budney, Ryan Little cubes and long knots, Topology, Tome 46 (2007) no. 1, pp. 1-27 | Article | MR: 2288724 | Zbl: 1114.57003

[7] Budney, Ryan A family of embedding spaces, Groups, homotopy and configuration spaces (Geom. Topol. Monogr.) Tome 13, Geom. Topol. Publ., Coventry, 2008, pp. 41-83 | Article | MR: 2508201 | Zbl: 1158.57035

[8] Cattaneo, Alberto S.; Cotta-Ramusino, Paolo; Longoni, Riccardo Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol., Tome 2 (2002), p. 949-1000 (electronic) | Article | MR: 1936977 | Zbl: 1029.57009

[9] Cattaneo, Alberto S.; Rossi, Carlo A. Wilson surfaces and higher dimensional knot invariants, Comm. Math. Phys., Tome 256 (2005) no. 3, pp. 513-537 | Article | MR: 2161270 | Zbl: 1101.57012

[10] Cohen, F. R.; Taylor, L. R. On the representation theory associated to the cohomology of configuration spaces, Algebraic topology (Oaxtepec, 1991) (Contemp. Math.) Tome 146, Amer. Math. Soc., Providence, RI, 1993, pp. 91-109 | Article | MR: 1224909 | Zbl: 0806.57012

[11] Cohen, Frederick R.; Lada, Thomas J.; May, J. Peter The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976, vii+490 pages | MR: 436146 | Zbl: 0334.55009

[12] Conant, James; Gerlits, Ferenc; Vogtmann, Karen Cut vertices in commutative graphs, Q. J. Math., Tome 56 (2005) no. 3, pp. 321-336 | Article | MR: 2161246 | Zbl: 1187.05029

[13] Dasbach, Oliver T. On the combinatorial structure of primitive Vassiliev invariants. II, J. Combin. Theory Ser. A, Tome 81 (1998) no. 2, pp. 127-139 | Article | MR: 1603869 | Zbl: 0888.57009

[14] Fresse, Benoit Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory (Contemp. Math.) Tome 346, Amer. Math. Soc., Providence, RI, 2004, pp. 115-215 | Article | MR: 2066499 | Zbl: 1077.18007

[15] Gerstenhaber, Murray; Schack, S. D. A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, Tome 48 (1987) no. 3, pp. 229-247 | Article | MR: 917209 | Zbl: 0671.13007

[16] Getzler, E.; Jones, J. D. S. Operads, homotopy algebra and iterated integrals for double loop spaces (arXiv:hep-th/9403055)

[17] Hirsch, Morris W. Immersions of manifolds, Trans. Amer. Math. Soc., Tome 93 (1959), pp. 242-276 | Article | MR: 119214 | Zbl: 0113.17202

[18] Klyachko, A. A. Lie elements in the tensor algebra, Siberian Math. J., Tome 15 (1974), pp. 914-920 | Article | Zbl: 0325.15018

[19] Kontsevich, Maxim; Soibelman, Yan Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) (Math. Phys. Stud.) Tome 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255-307 | MR: 1805894 | Zbl: 0972.18005

[20] Lambrechts, Pascal; Turchin, Victor Homotopy graph-complex for configuration and knot spaces, Trans. Amer. Math. Soc., Tome 361 (2009) no. 1, pp. 207-222 | Article | MR: 2439404 | Zbl: 1158.57030

[21] Lambrechts, Pascal; Turchin, Victor; Volić, Ismar The rational homology of spaces of long knots in codimension >2, Geom. Topol., Tome 14 (2010) no. 4, pp. 2151-2187 | Article | MR: 2740644 | Zbl: 1222.57020

[22] Lambrechts, Pascal; Volić, Ismar Formality of the little N-disks operad, To appear in Memoirs of the AMS (Preprint arXiv:0808.0457)

[23] Lehrer, G. I. Equivariant cohomology of configurations in R d , Algebr. Represent. Theory, Tome 3 (2000) no. 4, pp. 377-384 (Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday) | Article | MR: 1808133 | Zbl: 1161.57304

[24] Lehrer, G. I.; Solomon, Louis On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra, Tome 104 (1986) no. 2, pp. 410-424 | Article | MR: 866785 | Zbl: 0608.20010

[25] Loday, Jean-Louis Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math., Tome 96 (1989) no. 1, pp. 205-230 | Article | MR: 981743 | Zbl: 0686.18006

[26] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 346, Springer, Heidelberg, 2012, xxiv+634 pages | Article | MR: 2954392 | Zbl: 1260.18001

[27] Merkulov, Sergei; Vallette, Bruno Deformation theory of representations of prop(erad)s. I, J. Reine Angew. Math., Tome 634 (2009), pp. 51-106 | Article | MR: 2560406 | Zbl: 1187.18006

[28] Moskovich, Daniel; Ohtsuki, Tomotada Vanishing of 3-loop Jacobi diagrams of odd degree, J. Combin. Theory Ser. A, Tome 114 (2007) no. 5, pp. 919-930 | Article | MR: 2333141 | Zbl: 1118.57015

[29] Pirashvili, Teimuraz Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. (4), Tome 33 (2000) no. 2, pp. 151-179 | Article | Numdam | MR: 1755114 | Zbl: 0957.18004

[30] Robinson, Alan; Whitehouse, Sarah The tree representation of Σ n+1 , J. Pure Appl. Algebra, Tome 111 (1996) no. 1-3, pp. 245-253 | Article | MR: 1394355 | Zbl: 0865.55010

[31] Sakai, Keiichi Configuration space integrals for embedding spaces and the Haefliger invariant, J. Knot Theory Ramifications, Tome 19 (2010) no. 12, pp. 1597-1644 | Article | MR: 2755492 | Zbl: 1223.57024

[32] Sakai, Keiichi; Watanabe, Tadayuki 1-loop graphs and configuration space integral for embedding spaces, Math. Proc. Cambridge Philos. Soc., Tome 152 (2012) no. 3, pp. 497-533 | Article | MR: 2911142 | Zbl: 1243.57022

[33] Salvatore, Paolo Knots, operads, and double loop spaces, Int. Math. Res. Not. (2006), Art. ID 13628, 22 pages | Article | MR: 2276349 | Zbl: 1131.55004

[34] Ševera, Pavol; Willwacher, Thomas Equivalence of formalities of the little discs operad, Duke Math. J., Tome 160 (2011) no. 1, pp. 175-206 | Article | MR: 2838354 | Zbl: 1241.18008

[35] Sinha, Dev P. A pairing between graphs and trees (arXiv:math/0502547)

[36] Sinha, Dev P. Operads and knot spaces, J. Amer. Math. Soc., Tome 19 (2006) no. 2, p. 461-486 (electronic) | Article | MR: 2188133 | Zbl: 1112.57004

[37] Sinha, Dev P. The homology of the little discs operad, Séminaire et Congrès de Société Mathématique de France, Tome 26 (2011), pp. 255-281

[38] Tourtchine, V. On the homology of the spaces of long knots, Advances in topological quantum field theory (NATO Sci. Ser. II Math. Phys. Chem.) Tome 179, Kluwer Acad. Publ., Dordrecht, 2004, pp. 23-52 | Article | MR: 2147415 | Zbl: 1117.57023

[39] Tourtchine, V. On the other side of the bialgebra of chord diagrams, J. Knot Theory Ramifications, Tome 16 (2007) no. 5, pp. 575-629 | Article | MR: 2333307 | Zbl: 1151.57029

[40] Turchin, Victor Hodge-type decomposition in the homology of long knots, J. Topol., Tome 3 (2010) no. 3, pp. 487-534 | Article | MR: 2684511 | Zbl: 1205.57023

[41] Vassiliev, V. A. Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, Tome 98, American Mathematical Society, Providence, RI, 1992, vi+208 pages (Translated from the Russian by B. Goldfarb) | MR: 1168473

[42] Watanabe, Tadayuki Configuration space integral for long n-knots and the Alexander polynomial, Algebr. Geom. Topol., Tome 7 (2007), pp. 47-92 | Article | MR: 2289804 | Zbl: 1133.57016

[43] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Tome 38, Cambridge University Press, Cambridge, 1994, xiv+450 pages | Article | MR: 1269324 | Zbl: 0797.18001

[44] Weiss, Michael S. Homology of spaces of smooth embeddings, Q. J. Math., Tome 55 (2004) no. 4, pp. 499-504 | Article | MR: 2104688 | Zbl: 1065.57030

[45] Whitehouse, S. Gamma Homology of Commutative Algebras and Some Related Representations of the Symmetric Group (1994) (Ph. D. Thesis)

[46] Willwacher, T. M. Kontsevich’s graph complex and the Grothendieck-Teichmueller Lie algebra (To appear in Invent. Math. Preprint arXiv:1009.1654) | MR: 3348138

Cited by Sources: