Soit une variété kählerienne compacte et connexe, équipée d’une involution antiholomorphe compatible avec la structure Kählerienne. Soit un groupe algébrique affine complexe, connexe et muni d’une forme réelle . Nous définissons des -fibrés principaux holomorphes pseudo-réels sur , ce qui généralise la notion de -fibré principal réel sur une variété réelle. Nous introduisons ensuite les notions de -fibré principal pseudo-réel stable, semi-stable et polystable. La relation de ces concepts avec les notions usuelles de -fibré principal stable, semi-stable et polystable est discutée. Nous démontrons ensuite qu’il existe une correspondance de type Donaldson-Uhlenbeck-Yau : un -fibré principal holomorphe pseudo-réel admet une connection Hermite-Einstein compatible si et seulement s’il est polystable. Nous établissons ensuite une bijection entre les deux ensembles suivants :
- (1) Les classes d’isomorphisme de -fibrés principaux holomorphes pseudo-réels sur , dont toutes les classes caractéristiques rationnelles du -fibré topologique sous-jacent s’annulent.
- (2) Les classes d’équivalence de représentations tordues du groupe fondamental étendu de dans un sous-groupe maximal compact -invariant de . (Les représentations tordues sont définies en utilisant l’élément central qui entre dans la définition d’un -fibré principal pseudo-réel.)
Tous ces résultats sont ensuite généralisés au cas du -fibré de Higgs pseudo-réel.
Let be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let be a connected complex reductive affine algebraic group equipped with a real form . We define pseudo-real principal -bundles on . These are generalizations of real algebraic principal -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal -bundles. Their relationships with the usual stable, semistable and polystable principal -bundles are investigated. We then prove that the following Donaldson-Uhlenbeck-Yau type correspondence holds: a pseudo-real principal -bundle admits a compatible Einstein-Hermitian connection if and only if it is polystable. A bijection between the following two sets is established:
- (1) The isomorphism classes of polystable pseudo-real principal -bundles such that all the rational characteristic classes of positive degree of the underlying topological principal -bundle vanish.
- (2) The equivalence classes of twisted representations of the extended fundamental group of in a -invariant maximal compact subgroup of . (The twisted representations are defined using the central element in the definition of a pseudo-real principal -bundle.)
All these results are also generalized to the pseudo-real Higgs -bundle.
Keywords: Pseudo-real bundle, real form, Einstein-Hermitian connection, Higgs bundle, polystability
Mot clés : Fibré pseudo-réel, form réelle, connexion Hermite-Einstein, fibré de Higgs, polystabilité
Biswas, Indranil 1 ; García-Prada, Oscar 2 ; Hurtubise, Jacques 3
@article{AIF_2014__64_6_2527_0, author = {Biswas, Indranil and Garc{\'\i}a-Prada, Oscar and Hurtubise, Jacques}, title = {Pseudo-real principal {Higgs} bundles on compact {K\"ahler} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2527--2562}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2920}, mrnumber = {3331174}, zbl = {06387347}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2920/} }
TY - JOUR AU - Biswas, Indranil AU - García-Prada, Oscar AU - Hurtubise, Jacques TI - Pseudo-real principal Higgs bundles on compact Kähler manifolds JO - Annales de l'Institut Fourier PY - 2014 SP - 2527 EP - 2562 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2920/ DO - 10.5802/aif.2920 LA - en ID - AIF_2014__64_6_2527_0 ER -
%0 Journal Article %A Biswas, Indranil %A García-Prada, Oscar %A Hurtubise, Jacques %T Pseudo-real principal Higgs bundles on compact Kähler manifolds %J Annales de l'Institut Fourier %D 2014 %P 2527-2562 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2920/ %R 10.5802/aif.2920 %G en %F AIF_2014__64_6_2527_0
Biswas, Indranil; García-Prada, Oscar; Hurtubise, Jacques. Pseudo-real principal Higgs bundles on compact Kähler manifolds. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2527-2562. doi : 10.5802/aif.2920. https://aif.centre-mersenne.org/articles/10.5802/aif.2920/
[1] Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math., Volume 123 (2001) no. 2, pp. 207-228 | DOI | MR | Zbl
[2] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl
[3] Semi-stability of reductive group schemes over curves, Math. Ann., Volume 301 (1995) no. 2, pp. 281-305 | DOI | EuDML | MR | Zbl
[4] Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom., Volume 33 (2008) no. 1, pp. 19-46 | DOI | MR | Zbl
[5] The moduli space of stable vector bundles over a real algebraic curve, Math. Ann., Volume 347 (2010) no. 1, pp. 201-233 | DOI | MR | Zbl
[6] Principal bundles over a real algebraic curve, Comm. Anal. Geom., Volume 20 (2012) no. 5, pp. 957-988 | DOI | MR | Zbl
[7] Yang-Mills equation for stable Higgs sheaves, Internat. J. Math., Volume 20 (2009) no. 5, pp. 541-556 | DOI | MR | Zbl
[8] Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991, pp. xii+288 | MR | Zbl
[9] Flat -bundles with canonical metrics, J. Differential Geom., Volume 28 (1988) no. 3, pp. 361-382 | MR | Zbl
[10] Infinite determinants, stable bundles and curvature, Duke Math. J., Volume 54 (1987) no. 1, pp. 231-247 | DOI | MR | Zbl
[11] The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl
[12] Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, pp. xiv+247 (Graduate Texts in Mathematics, No. 21) | MR | Zbl
[13] The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997, pp. xiv+269 | MR | Zbl
[14] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, pp. xii+305 (Kanô Memorial Lectures, 5) | MR | Zbl
[15] Stable principal bundles on a compact Riemann surface, Math. Ann., Volume 213 (1975), pp. 129-152 | DOI | MR | Zbl
[16] Einstein-Hermitian connections on principal bundles and stability, J. Reine Angew. Math., Volume 390 (1988), pp. 21-31 | MR | Zbl
[17] Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988) no. 4, pp. 867-918 | DOI | MR | Zbl
[18] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 5-95 | DOI | Numdam | MR | Zbl
[19] On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math., Volume 39 (1986) no. S, suppl., p. S257-S293 Frontiers of the mathematical sciences: 1985 (New York, 1985) | DOI | MR | Zbl
Cité par Sources :