Gauss–Manin connections for p-adic families of nearly overconvergent modular forms
[Connexions de Gauss–Manin pour les families p-adiques de formes modulaires quasi-surconvergentes]
Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2449-2464.

Nous obtenons l’interpolation de la connexion de Gauss–Manin en familles p-adiques de formes modulaires quasi-surconvergentes. Ceci donne une famille d’opérateurs différentiels à la Maass–Shimura qui envoie l’espace de formes modulaires quasi-surconvergentes de type r dans celui de formes modulaires quasi-surconvergentes de type r+1 et de poids p-adique augmenté par 2. Notre méthode est purement géométrique, elle utlise les constructions géométriques des courbes de Hecke dues à Andreatta–Iovita–Stevens et Pilloni, et devrait donc se généraliser aux groupes de rang supérieur.

We interpolate the Gauss–Manin connection in p-adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly overconvergent modular forms of type r+1 with p-adic weight shifted by 2. Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.

DOI : 10.5802/aif.2916
Classification : 11F33, 14F40
Keywords: Gauss–Manin connections, Nearly overconvergent modular forms, Eigencurves, Families of $p$-adic modular forms
Mot clés : Connexions de Gauss–Manin, Formes modulaires quasi-surconvergents, courbes de Hecke, Familles $p$-adiques de formes modulaires

Harron, Robert 1 ; Xiao, Liang 2

1 Department of Mathematics, Keller Hall, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
2 Department of Mathematics, Mathematical Sciences Building, University of Connecticut, Storrs, Storrs, CT 06269, USA
@article{AIF_2014__64_6_2449_0,
     author = {Harron, Robert and Xiao, Liang},
     title = {Gauss{\textendash}Manin connections for $p$-adic families of nearly overconvergent modular forms},
     journal = {Annales de l'Institut Fourier},
     pages = {2449--2464},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {6},
     year = {2014},
     doi = {10.5802/aif.2916},
     mrnumber = {3331170},
     zbl = {06387343},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2916/}
}
TY  - JOUR
AU  - Harron, Robert
AU  - Xiao, Liang
TI  - Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 2449
EP  - 2464
VL  - 64
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2916/
DO  - 10.5802/aif.2916
LA  - en
ID  - AIF_2014__64_6_2449_0
ER  - 
%0 Journal Article
%A Harron, Robert
%A Xiao, Liang
%T Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms
%J Annales de l'Institut Fourier
%D 2014
%P 2449-2464
%V 64
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2916/
%R 10.5802/aif.2916
%G en
%F AIF_2014__64_6_2449_0
Harron, Robert; Xiao, Liang. Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2449-2464. doi : 10.5802/aif.2916. https://aif.centre-mersenne.org/articles/10.5802/aif.2916/

[1] Andreatta, F.; Iovita, A.; Pilloni, V. On overconvergent modular sheaves and modular forms for GL 2/F (preprint, to appear in Israel J. Math., doi:10.1007/s11856-014-1045-8)

[2] Andreatta, F.; Iovita, A.; Stevens, G. p-adic families of Siegel modular cuspforms (to appear in Ann. of Math.) | Zbl

[3] Buzzard, K. Eigenvarieties, L-functions and Galois representations (London Math. Soc. Lecture Note Ser.), Volume 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59-120 | MR | Zbl

[4] Coleman, R.; Gouvêa, F.; Jochnowitz, N. E 2 , Θ, and overconvergence, Int. Math. Res. Not. (1995) no. 1, pp. 23-41 | DOI | MR | Zbl

[5] Darmon, H.; Rotger, V. Diagonal cycles and Euler systems I: A p-adic Gross–Zagier formula to appear in Ann. Sci. Éc. Norm. Supér. (4) | Zbl

[6] Fargues, L. La filtration de Harder–Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | DOI | MR | Zbl

[7] Katz, N. p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Lecture Notes in Mathematics), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl

[8] Pilloni, V. Overconvergent modular forms, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | EuDML | Numdam | MR | Zbl

[9] Urban, E. Nearly overconvergent modular forms (to appear in the Proceedings of conference IWASAWA 2012 held at Heidelberg, available at http://www.math.columbia.edu/~urban/EURP.html) | Zbl

[10] Urban, Eric On the rank of Selmer groups for elliptic curves over , Automorphic representations and L-functions (Tata Inst. Fundam. Res. Stud. Math.), Volume 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 651-680 | MR

Cité par Sources :