Nous obtenons l’interpolation de la connexion de Gauss–Manin en familles -adiques de formes modulaires quasi-surconvergentes. Ceci donne une famille d’opérateurs différentiels à la Maass–Shimura qui envoie l’espace de formes modulaires quasi-surconvergentes de type dans celui de formes modulaires quasi-surconvergentes de type et de poids -adique augmenté par . Notre méthode est purement géométrique, elle utlise les constructions géométriques des courbes de Hecke dues à Andreatta–Iovita–Stevens et Pilloni, et devrait donc se généraliser aux groupes de rang supérieur.
We interpolate the Gauss–Manin connection in -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type to the space of nearly overconvergent modular forms of type with -adic weight shifted by . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.
Keywords: Gauss–Manin connections, Nearly overconvergent modular forms, Eigencurves, Families of $p$-adic modular forms
Mot clés : Connexions de Gauss–Manin, Formes modulaires quasi-surconvergents, courbes de Hecke, Familles $p$-adiques de formes modulaires
Harron, Robert 1 ; Xiao, Liang 2
@article{AIF_2014__64_6_2449_0, author = {Harron, Robert and Xiao, Liang}, title = {Gauss{\textendash}Manin connections for $p$-adic families of nearly overconvergent modular forms}, journal = {Annales de l'Institut Fourier}, pages = {2449--2464}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2916}, mrnumber = {3331170}, zbl = {06387343}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2916/} }
TY - JOUR AU - Harron, Robert AU - Xiao, Liang TI - Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms JO - Annales de l'Institut Fourier PY - 2014 SP - 2449 EP - 2464 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2916/ DO - 10.5802/aif.2916 LA - en ID - AIF_2014__64_6_2449_0 ER -
%0 Journal Article %A Harron, Robert %A Xiao, Liang %T Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms %J Annales de l'Institut Fourier %D 2014 %P 2449-2464 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2916/ %R 10.5802/aif.2916 %G en %F AIF_2014__64_6_2449_0
Harron, Robert; Xiao, Liang. Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2449-2464. doi : 10.5802/aif.2916. https://aif.centre-mersenne.org/articles/10.5802/aif.2916/
[1] On overconvergent modular sheaves and modular forms for (preprint, to appear in Israel J. Math., doi:10.1007/s11856-014-1045-8)
[2] -adic families of Siegel modular cuspforms (to appear in Ann. of Math.) | Zbl
[3] Eigenvarieties, -functions and Galois representations (London Math. Soc. Lecture Note Ser.), Volume 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59-120 | MR | Zbl
[4] , , and overconvergence, Int. Math. Res. Not. (1995) no. 1, pp. 23-41 | DOI | MR | Zbl
[5] Diagonal cycles and Euler systems I: A -adic Gross–Zagier formula to appear in Ann. Sci. Éc. Norm. Supér. (4) | Zbl
[6] La filtration de Harder–Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | DOI | MR | Zbl
[7] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Lecture Notes in Mathematics), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl
[8] Overconvergent modular forms, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | EuDML | Numdam | MR | Zbl
[9] Nearly overconvergent modular forms (to appear in the Proceedings of conference IWASAWA 2012 held at Heidelberg, available at http://www.math.columbia.edu/~urban/EURP.html) | Zbl
[10] On the rank of Selmer groups for elliptic curves over , Automorphic representations and -functions (Tata Inst. Fundam. Res. Stud. Math.), Volume 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 651-680 | MR
Cité par Sources :