On propose une généralisation de la description de Nakamaye, par le biais de la théorie d’intersection, du lieu de base augmenté d’un diviseur grand et nef sur une paire normale avec singularités log-canoniques ou, plus généralement, sur une variété avec lieu non-lc de dimension . On propose aussi une généralisation de la description de Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa, en termes de valuations, des sous-variétés du lieu de base restreint d’un diviseur grand sur une paire normale avec singularités klt.
We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension . We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.
Keywords: Base loci, log-canonical singularities, non-lc ideal
Mot clés : lieux de base, singularités log-canoniques, idéaux non-lc
Cacciola, Salvatore 1 ; Lopez, Angelo Felice 1
@article{AIF_2014__64_6_2283_0, author = {Cacciola, Salvatore and Lopez, Angelo Felice}, title = {Nakamaye{\textquoteright}s theorem on log canonical pairs}, journal = {Annales de l'Institut Fourier}, pages = {2283--2298}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2913}, mrnumber = {3331167}, zbl = {06387340}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2913/} }
TY - JOUR AU - Cacciola, Salvatore AU - Lopez, Angelo Felice TI - Nakamaye’s theorem on log canonical pairs JO - Annales de l'Institut Fourier PY - 2014 SP - 2283 EP - 2298 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2913/ DO - 10.5802/aif.2913 LA - en ID - AIF_2014__64_6_2283_0 ER -
%0 Journal Article %A Cacciola, Salvatore %A Lopez, Angelo Felice %T Nakamaye’s theorem on log canonical pairs %J Annales de l'Institut Fourier %D 2014 %P 2283-2298 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2913/ %R 10.5802/aif.2913 %G en %F AIF_2014__64_6_2283_0
Cacciola, Salvatore; Lopez, Angelo Felice. Nakamaye’s theorem on log canonical pairs. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2283-2298. doi : 10.5802/aif.2913. https://aif.centre-mersenne.org/articles/10.5802/aif.2913/
[1] Quasi-log varieties, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 220-239 (Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry) | MR | Zbl
[2] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[3] Uniruledness of stable base loci of adjoint linear systems via Mori theory, Math. Z., Volume 275 (2013) no. 1-2, pp. 499-507 | DOI | MR | Zbl
[4] A refinement of Izumi’s theorem (arXiv:math.AG. 1209.4104)
[5] Asymptotic base loci on singular varieties (To appear in Math. Z. DOI 10.1007/s00209-012-1128-3; arXiv:math.AG.1105.1253) | MR | Zbl
[6] The augmented base locus in positive characteristic, Proc. Edinb. Math. Soc. (2), Volume 57 (2014) no. 1, pp. 79-87 | DOI | MR | Zbl
[7] Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 6, pp. 1701-1734 | DOI | Numdam | MR | Zbl
[8] Restricted volumes and base loci of linear series, Amer. J. Math., Volume 131 (2009) no. 3, pp. 607-651 | DOI | MR | Zbl
[9] Singularities on normal varieties, Compos. Math., Volume 145 (2009) no. 2, pp. 393-414 | DOI | MR | Zbl
[10] Theory of non-lc ideal sheaves: basic properties, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 225-245 | DOI | MR | Zbl
[11] A relative version of Kawamata-Viehweg vanishing theorem (1985) (Preprint Tokyo Univ.)
[12] Towards the ample cone of , J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 273-294 | DOI | MR | Zbl
[13] Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006) no. 1, pp. 1-25 | DOI | MR | Zbl
[14] Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | MR | Zbl
[15] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, pp. viii+254 | Zbl
[16] Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 49, Springer-Verlag, Berlin, 2004, pp. xviii+385 | MR | Zbl
[17] On Eckl’s pseudo-effective reduction map, Trans. Amer. Math. Soc., Volume 366 (2014) no. 3, pp. 1525-1549 | DOI | MR
[18] The diminished base locus is not always closed (arXiv:math.AG.1212.3738) | MR
[19] The non-nef locus in positive characteristic, A celebration of algebraic geometry (Clay Math. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 2013, pp. 535-551 | MR
[20] Stable base loci of linear series, Math. Ann., Volume 318 (2000) no. 4, pp. 837-847 | DOI | MR | Zbl
[21] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, pp. xiv+277 | MR | Zbl
[22] Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006) no. 3, pp. 551-587 | DOI | MR | Zbl
Cité par Sources :