We associate to a given polynomial map from to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
On associe à une application polynomiale de dans lui-même à Jacobien constant non nul, une variété dont l’homologie ou l’homologie d’intersection décrit la géométrie à l’infini de cette application.
Keywords: complex polynomial mappings, singularities at infinity, asymptotical values, intersection homology, Jacobian conjecture.
Mot clés : singularités à l’infini, valeurs asymptotiques, homologie d’intersection, conjecture Jacobienne.
Valette, Anna 1; Valette, Guillaume 2
@article{AIF_2014__64_5_2147_0, author = {Valette, Anna and Valette, Guillaume}, title = {On the geometry of polynomial mappings at infinity}, journal = {Annales de l'Institut Fourier}, pages = {2147--2163}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2907}, mrnumber = {3330934}, zbl = {06387334}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2907/} }
TY - JOUR AU - Valette, Anna AU - Valette, Guillaume TI - On the geometry of polynomial mappings at infinity JO - Annales de l'Institut Fourier PY - 2014 SP - 2147 EP - 2163 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2907/ DO - 10.5802/aif.2907 LA - en ID - AIF_2014__64_5_2147_0 ER -
%0 Journal Article %A Valette, Anna %A Valette, Guillaume %T On the geometry of polynomial mappings at infinity %J Annales de l'Institut Fourier %D 2014 %P 2147-2163 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2907/ %R 10.5802/aif.2907 %G en %F AIF_2014__64_5_2147_0
Valette, Anna; Valette, Guillaume. On the geometry of polynomial mappings at infinity. Annales de l'Institut Fourier, Volume 64 (2014) no. 5, pp. 2147-2163. doi : 10.5802/aif.2907. https://aif.centre-mersenne.org/articles/10.5802/aif.2907/
[1] Géométrie algébrique réelle, Springer, 1987 | MR | Zbl
[2] Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | DOI | MR | Zbl
[3] Intersection homology. II, Invent. Math., Volume 72 (1983), pp. 77-129 | DOI | MR | Zbl
[4] Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., Volume 102 (1980) no. 2, pp. 291-302 | DOI | MR | Zbl
[5] The set of point at which polynomial map is not proper, Ann. Polon. Math., Volume 58 (1993) no. 3, pp. 259-266 | MR | Zbl
[6] Testing sets for properness of polynomial mappings, Math. Ann., Volume 315 (1999) no. 1, pp. 1-35 | DOI | MR | Zbl
[7] Geometry of real polynomial mappings, Math. Z., Volume 239 (2002) no. 2, pp. 321-333 | DOI | MR | Zbl
[8] Ganze Cremonatransformationen Monatschr, Math. Phys., Volume 47 (1939), pp. 229-306 | Zbl
[9] An Introduction to Intersection Homology Theory, Chapman & Hall/CRC, 2006 | MR | Zbl
[10] Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 3 (1976) no. 2, pp. 245-266 | Numdam | MR | Zbl
[11] homology is an intersection homology, Adv. in Math., Volume 231 (2012) no. 3-4, pp. 1818-1842 | DOI | MR | Zbl
Cited by Sources: