Let be a holomorphic one-dimensional foliation on such that the components of its singular locus are curves and points . We determine the number of , counted with multiplicities, in terms of invariants of and , assuming that is special along the . Allowing just one nonzero dimensional component on , we also prove results on when the foliation happens to be determined by its singular locus.
Soit un feuilletage holomorphe unidimensionnel sur , dont les composantes du lieu singulier sont des courbes et des points . On exprime le nombre de tels points , comptés avec leurs multiplicités, en termes des invariants de et , en supposant que est spécial le long des courbes . En supposant qu’il n’y a qu’une seule composante de de dimension non nulle, on obtient aussi des résultats lorsque le feuilletage est déterminé par ses lieux singuliers.
Keywords: holomorphic foliations, non-isolated singularities
Mot clés : feuilletages holomorphes, singularités non-isolées
Corrêa Jr, M. 1; Fernández-Pérez, A. 1; Nonato Costa, G. 1; Vidal Martins, R. 1
@article{AIF_2014__64_4_1781_0, author = {Corr\^ea Jr, M. and Fern\'andez-P\'erez, A. and Nonato Costa, G. and Vidal Martins, R.}, title = {Foliations by curves with curves as singularities}, journal = {Annales de l'Institut Fourier}, pages = {1781--1805}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2896}, mrnumber = {3329679}, zbl = {06387323}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2896/} }
TY - JOUR AU - Corrêa Jr, M. AU - Fernández-Pérez, A. AU - Nonato Costa, G. AU - Vidal Martins, R. TI - Foliations by curves with curves as singularities JO - Annales de l'Institut Fourier PY - 2014 SP - 1781 EP - 1805 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2896/ DO - 10.5802/aif.2896 LA - en ID - AIF_2014__64_4_1781_0 ER -
%0 Journal Article %A Corrêa Jr, M. %A Fernández-Pérez, A. %A Nonato Costa, G. %A Vidal Martins, R. %T Foliations by curves with curves as singularities %J Annales de l'Institut Fourier %D 2014 %P 1781-1805 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2896/ %R 10.5802/aif.2896 %G en %F AIF_2014__64_4_1781_0
Corrêa Jr, M.; Fernández-Pérez, A.; Nonato Costa, G.; Vidal Martins, R. Foliations by curves with curves as singularities. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1781-1805. doi : 10.5802/aif.2896. https://aif.centre-mersenne.org/articles/10.5802/aif.2896/
[1] On degeneracy schemes of maps of vector bundles and applications to holomorphic foliations, Math. Z., Volume 276 (2014) no. 1-2, pp. 505-515 | DOI | MR | Zbl
[2] On the zeros of meromorphic vector-fields, Essays on Topology and Related topics, Mémoires dédiés à Georges de Rham, Springer-Verlag, Berlin, 1970 | MR | Zbl
[3] Vanishing theorem, a theorem of Severi, and the equations defining projectives varieties, J. Amer. Math. Soc., Volume 4 (1991), pp. 587-602 | DOI | MR | Zbl
[4] On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett., Volume 10 (2003), pp. 651-658 | DOI | MR | Zbl
[5] Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv., Volume 64 (1989), pp. 462-473 | DOI | MR | Zbl
[6] Positivity in algebraic geometry, I, II, Springer, 2004 | MR | Zbl
[7] Holomorphic foliations by curves on with non-isolated singularities, Ann. Fac. Sci. Toulouse, Math. (6), Volume 15 (2006) no. 2, pp. 297-321 | DOI | Numdam | MR | Zbl
[8] Blowing up Chern class, Proc. Cambridge Phil. Soc., Volume 56 (1960), pp. 118-124 | DOI | MR | Zbl
Cited by Sources: