Pour un diviseur pseudo-effectif nous construisons l’idéal diminué qui est une extension “continue” de l’idéal multiplicateur asymptotique pour les grands diviseurs au cône pseudo-effectif. L’idéal multiplicateur d’une métrique hermitiennes à singularités minimales sur est souvent contenu dans . Nous caractérisons les diviseurs abondants par l’idéal diminué, montrant que les informations de nature géométriques et analytique doivent coïncider.
Given a pseudo-effective divisor we construct the diminished ideal , a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors the multiplier ideal of the metric of minimal singularities on is contained in . We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.
Keywords: Multiplier ideals, metric of minimal singularities
Mot clés : idéal multiplicateur, métrique à singularités minimales
Lehmann, Brian 1
@article{AIF_2014__64_3_1077_0, author = {Lehmann, Brian}, title = {Algebraic bounds on analytic multiplier ideals}, journal = {Annales de l'Institut Fourier}, pages = {1077--1108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {3}, year = {2014}, doi = {10.5802/aif.2874}, mrnumber = {3330164}, zbl = {06387301}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2874/} }
TY - JOUR AU - Lehmann, Brian TI - Algebraic bounds on analytic multiplier ideals JO - Annales de l'Institut Fourier PY - 2014 SP - 1077 EP - 1108 VL - 64 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2874/ DO - 10.5802/aif.2874 LA - en ID - AIF_2014__64_3_1077_0 ER -
%0 Journal Article %A Lehmann, Brian %T Algebraic bounds on analytic multiplier ideals %J Annales de l'Institut Fourier %D 2014 %P 1077-1108 %V 64 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2874/ %R 10.5802/aif.2874 %G en %F AIF_2014__64_3_1077_0
Lehmann, Brian. Algebraic bounds on analytic multiplier ideals. Annales de l'Institut Fourier, Tome 64 (2014) no. 3, pp. 1077-1108. doi : 10.5802/aif.2874. https://aif.centre-mersenne.org/articles/10.5802/aif.2874/
[1] Divisorial Zariski Decompositions on Compact Complex Manifolds, Ann. Sci. École Norm. Sup., Volume 37 (2004) no. 4, pp. 45-76 | Numdam | MR | Zbl
[2] The Pseudo-Effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Alg. Geom., Volume 22 (2013), pp. 201-248 | MR | Zbl
[3] Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 449-494 | MR | Zbl
[4] Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990) (Lecture Notes in Math., 1507) (1992), pp. 87-104 | MR | Zbl
[5] Monge-Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry (Univ. Ser. Math.), Plenum Press, New York, 1993, pp. 115-193 | MR | Zbl
[6] Complex analytic and differential geometry, 2012 (http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[7] A Subadditivity Property of Multiplier Ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | MR | Zbl
[8] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4), Volume 34 (2001) no. 4, pp. 525-556 | Numdam | MR | Zbl
[9] Compact complex manifolds with numerically effective tangent bundles, Journal of Algebraic Geometry, Volume 3 (1994) no. 2, pp. 295-346 | MR | Zbl
[10] Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | MR | Zbl
[11] Numerically trival foliations, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 4, pp. 887-938 | Numdam | MR | Zbl
[12] Numerically trival foliations, Iitaka fibrations, and the numerical dimension, 2005 (arXiv:math/0508340v1) | Numdam | MR
[13] Asymptotic invariants of base loci, Pure Appl. Math. Q., Volume 1 (2005) no. 2, pp. 379-403 | MR | Zbl
[14] Restricted Volumes and Base Loci of Linear Series, Amer. J. Math., Volume 131 (2009) no. 3, pp. 607-651 | MR | Zbl
[15] The valuative tree, Lecture notes in mathematics, 1853, Springer-Verlag, Berlin Heidelberg, 2004 | MR | Zbl
[16] Valuations and multiplier ideals, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | MR | Zbl
[17] A derived category approach to generic vanishing, J. Reine Angew. Math., Volume 575 (2004), pp. 173-187 | MR | Zbl
[18] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 6, pp. 2145-2209 | Numdam | MR | Zbl
[19] Positivity in Algebraic Geometry I-II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48-49, Springer-Verlag, Berlin Heidelberg, 2004 | MR | Zbl
[20] On Eckl’s pseudo-effective reduction map, 2011 (arXiv:1103.1073, to appear in Trans. of the A.M.S.)
[21] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004 | MR | Zbl
[22] A characterization of nef and good divisors by asymptotic multiplier ideals, Bulletin of the Belgian Mathematical Society-Simon Stevin, Volume 16 (2009) no. 5, pp. 943-951 | MR | Zbl
[23] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Inventiones Mathematicae, Volume 27 (1974) no. 1, pp. 53-156 | MR | Zbl
[24] Iitaka’s fibration via multiplier ideals, Trans. Amer. Math. Soc., Volume 355 (2003) no. 1, pp. 37-47 | MR | Zbl
Cité par Sources :