La notion de variété duale d’ordre supérieur d’une variété projective, introduite par Piene en 1983, est une généralisation naturelle de la notion classique de dualité projective. Dans cet article, nous étudions les variétés duales d’ordre supérieur d’une immersion torique projective. Nous exprimons le degré de la variété duale d’ordre 2 d’une immersion 2-jet régulière, lisse et de dimension 3 en termes géometriques et combinatoires, et nous donnons une classification des variétés ayant une variété duale d’ordre 2 de dimension plus petite que celle attendue. Nous décrivons aussi la tropicalisation des variétés duales de tout ordre d’une variété torique immergée de façon équivariante (pas nécessairement normale).
Dedicated to the memory of our friend Mikael Passare (1959–2011)
The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.
Keywords: toric variety, higher order projective duality, tropicalization
Mot clés : variété torique, dualité projective d’ordre supérieur, tropicalisation
Dickenstein, Alicia 1 ; Di Rocco, Sandra 2 ; Piene, Ragni 3
@article{AIF_2014__64_1_375_0, author = {Dickenstein, Alicia and Di Rocco, Sandra and Piene, Ragni}, title = {Higher order duality and toric embeddings}, journal = {Annales de l'Institut Fourier}, pages = {375--400}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2851}, mrnumber = {3330552}, zbl = {06387278}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2851/} }
TY - JOUR AU - Dickenstein, Alicia AU - Di Rocco, Sandra AU - Piene, Ragni TI - Higher order duality and toric embeddings JO - Annales de l'Institut Fourier PY - 2014 SP - 375 EP - 400 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2851/ DO - 10.5802/aif.2851 LA - en ID - AIF_2014__64_1_375_0 ER -
%0 Journal Article %A Dickenstein, Alicia %A Di Rocco, Sandra %A Piene, Ragni %T Higher order duality and toric embeddings %J Annales de l'Institut Fourier %D 2014 %P 375-400 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2851/ %R 10.5802/aif.2851 %G en %F AIF_2014__64_1_375_0
Dickenstein, Alicia; Di Rocco, Sandra; Piene, Ragni. Higher order duality and toric embeddings. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 375-400. doi : 10.5802/aif.2851. https://aif.centre-mersenne.org/articles/10.5802/aif.2851/
[1] Generation of jets on K3 surfaces, J. Pure Appl. Algebra, Volume 146 (2000) no. 1, pp. 17-27 | DOI | MR | Zbl
[2] The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, 16, Walter de Gruyter & Co., 1995, pp. xxii+398 | MR | Zbl
[3] The geometry of the set of characters induced by valuations, J. reine angew. Math., Volume 347 (1984), pp. 168-195 | EuDML | MR | Zbl
[4] Projective Q-factorial toric varieties covered by lines, Commun. Contemp. Math., Volume 10 (2008) no. 3, pp. 363-389 | DOI | MR | Zbl
[5] The geometry of toric varieties, Uspekhi Mat. Nauk, Volume 33 (1978) no. 2(200), p. 85-134, 247 | MR | Zbl
[6] Singular 3-1-3 — A computer algebra system for polynomial computations, 2011 http://www.singular.uni-kl.de | Zbl
[7] Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup., Volume 3 (1970) no. 4, pp. 507-588 | EuDML | Numdam | MR | Zbl
[8] Generation of -jets on toric varieties, Math. Z., Volume 231 (1999) no. 1, pp. 169-188 | DOI | MR | Zbl
[9] Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Volume 93 (2006) no. 1, pp. 85-104 | DOI | MR | Zbl
[10] Polyhedral adjunction theory, Algebra Number Theory, Volume 7 (2013) no. 10, pp. 2417-2446 | DOI | MR
[11] Tropical discriminants, J. Amer. Math. Soc., Volume 20 (2007) no. 4, pp. 1111-1133 | DOI | MR | Zbl
[12] Singular tropical hypersurfaces, Discrete Comput. Geom, Volume 47 (2012) no. 2, pp. 430-453 | DOI | MR | Zbl
[13] Varieties with small dual varieties. II, Duke Math. J., Volume 52 (1985) no. 4, pp. 895-907 | DOI | MR | Zbl
[14] Varieties with small dual varieties. I, Invent. Math., Volume 86 (1986) no. 1, pp. 63-74 | DOI | MR | Zbl
[15] Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., Volume 601 (2006), pp. 139-157 | MR | Zbl
[16] On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 167-178 | MR | Zbl
[17] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., 1994, pp. x+523 | MR | Zbl
[18] Factorization of tropical polynomials in one and several variables, Honor’s Thesis, Brigham Young University, June 2007
[19] Higher order dual varieties of projective surfaces, Comm. Algebra, Volume 27 (1999) no. 10, pp. 4827-4851 | DOI | MR | Zbl
[20] Osculatory behavior and second dual varieties of del Pezzo surfaces, Adv. Geom., Volume 1 (2001) no. 4, pp. 345-363 | DOI | MR | Zbl
[21] Inflectional loci of scrolls, Math. Z., Volume 258 (2008), pp. 557-564 | DOI | MR | Zbl
[22] Inflectional loci of scrolls over smooth, projective varieties, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 717-750 | DOI | MR | Zbl
[23] Duality for elliptic normal surface scrolls, Enumerative algebraic geometry (Copenhagen, 1989) (Contemp. Math.), Volume 123, Amer. Math. Soc., Providence, RI, 1991, pp. 149-160 | MR | Zbl
[24] A geometric degree formula for -discriminants and Euler obstructions of toric varieties, Adv. Math., Volume 226 (2011) no. 2, pp. 2040-2064 | DOI | MR | Zbl
[25] Vanishing theorems on toric varieties, Tohoku Math. J., Volume 54 (2002), pp. 451-470 | DOI | MR | Zbl
[26] A note on higher order dual varieties, with an application to scrolls, Singularities, Part 2 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 335-342 | MR | Zbl
[27] Duality for rational normal scrolls, Comm. Algebra, Volume 12 (1984) no. 9–10, pp. 1041-1066 | DOI | MR | Zbl
[28] Computing tropical linear spaces, J. Symbolic Comput., Volume 51 (2013), pp. 86-98 (Software TropLi available at: http://math.berkeley.edu/~felipe/tropli/) | DOI | MR
[29] Solving systems of polynomial equations, CBMS, 97, Amer. Math. Soc., 2002 | MR | Zbl
[30] Compactifications of subvarieties of tori, Amer. J. Math., Volume 129 (2007) no. 4, pp. 1087-1104 | DOI | MR | Zbl
Cité par Sources :