The restriction theorem for fully nonlinear subequations
Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 217-265.

Let X be a submanifold of a manifold Z. We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z, restrict to be viscosity subsolutions of the restricted subequation on X? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed to a constant coefficient (i.e., euclidean) model. This provides a long list of geometrically and analytically interesting cases where restriction holds.

Soit X une sous-variété d’une variété Z. On se pose la question  : sous quelles conditions est-il vrai que les sous-solutions de viscosité d’une équation aux derivées partielles complètement non-linéaires sur Z, restreintes à X, sont des sous-solutions de viscosité de l’équation induite sur X  ? D’abord on démontre un résultat de base qui s’applique aux équations générales. Ensuite, deux résultats définitifs sont établis. Le premier s’applique à toutes les équations qui sont “définies géométriquement” et le deuxième s’applique aux équations qui peuvent être transformées par jet-équivalence en modèle de coefficients constants (i.e., modèle euclidien). En conséquence, nous obtenons une longue liste de cas intéressants du point du vue géométrique et analytique, où la réponse à notre question est positive.

Received:
Accepted:
DOI: 10.5802/aif.2846
Classification: 35J25,  35J70,  32W20,  32U05,  53C38
Keywords: Viscosity solution, viscosity subsolution, nonlinear second-order elliptic equations, restriction, submanifold, pluripotential theory
@article{AIF_2014__64_1_217_0,
     author = {Harvey, F. Reese and Lawson, H. Blaine Jr.},
     title = {The restriction theorem for fully nonlinear subequations},
     journal = {Annales de l'Institut Fourier},
     pages = {217--265},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.5802/aif.2846},
     zbl = {06387273},
     mrnumber = {3330548},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2846/}
}
TY  - JOUR
TI  - The restriction theorem for fully nonlinear subequations
JO  - Annales de l'Institut Fourier
PY  - 2014
DA  - 2014///
SP  - 217
EP  - 265
VL  - 64
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2846/
UR  - https://zbmath.org/?q=an%3A06387273
UR  - https://www.ams.org/mathscinet-getitem?mr=3330548
UR  - https://doi.org/10.5802/aif.2846
DO  - 10.5802/aif.2846
LA  - en
ID  - AIF_2014__64_1_217_0
ER  - 
%0 Journal Article
%T The restriction theorem for fully nonlinear subequations
%J Annales de l'Institut Fourier
%D 2014
%P 217-265
%V 64
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2846
%R 10.5802/aif.2846
%G en
%F AIF_2014__64_1_217_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The restriction theorem for fully nonlinear subequations. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 217-265. doi : 10.5802/aif.2846. https://aif.centre-mersenne.org/articles/10.5802/aif.2846/

[1] Alesker, Semyon Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables, Bull. Sci. Math., Tome 127 (2003) no. 1, pp. 1-35 | Article | MR: 1957796 | Zbl: 1033.15013

[2] Alesker, Semyon Quaternionic Monge-Ampère equations, J. Geom. Anal., Tome 13 (2003) no. 2, pp. 205-238 | Article | MR: 1967025 | Zbl: 1058.32028

[3] Alesker, Semyon; Verbitsky, Misha Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal., Tome 16 (2006) no. 3, pp. 375-399 | Article | MR: 2250051 | Zbl: 1106.32023

[4] Alexandrov, A. D. The Dirichlet problem for the equation Detz i,j =ψ(z 1 ,...,z n ,x 1 ,...,x n ), I. Vestnik, Leningrad Univ., Tome 13 (1958) no. 1, pp. 5-24

[5] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Tome 37 (1976) no. 1, pp. 1-44 | Article | MR: 445006 | Zbl: 0315.31007

[6] Bremermann, H. J. On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc., Tome 91 (1959), pp. 246-276 | MR: 136766 | Zbl: 0091.07501

[7] Crandall, Michael G. Viscosity solutions: a primer, Viscosity solutions and applications (Montecatini Terme, 1995) (Lecture Notes in Math.) Tome 1660, Springer, Berlin, 1997, pp. 1-43 | MR: 1462699 | Zbl: 0901.49026

[8] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Tome 27 (1992) no. 1, pp. 1-67 | Article | MR: 1118699 | Zbl: 0755.35015

[9] Harvey, F. Reese; Lawson, H. Blaine Jr. Hyperbolic polynomials and the Dirichlet problem (ArXiv:0912.5220)

[10] Harvey, F. Reese; Lawson, H. Blaine Jr. Potential theory on almost complex manifolds (Ann. Inst. Fourier (to appear). ArXiv:1107.2584)

[11] Harvey, F. Reese; Lawson, H. Blaine Jr. Calibrated geometries, Acta Math., Tome 148 (1982), pp. 47-157 | Article | MR: 666108 | Zbl: 0584.53021

[12] Harvey, F. Reese; Lawson, H. Blaine Jr. Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math., Tome 62 (2009) no. 3, pp. 396-443 | Article | MR: 2487853 | Zbl: 1173.35062

[13] Harvey, F. Reese; Lawson, H. Blaine Jr. Duality of positive currents and plurisubharmonic functions in calibrated geometry, Amer. J. Math., Tome 131 (2009) no. 5, pp. 1211-1239 | Article | MR: 2555839 | Zbl: 1179.53058

[14] Harvey, F. Reese; Lawson, H. Blaine Jr. An introduction to potential theory in calibrated geometry, Amer. J. Math., Tome 131 (2009) no. 4, pp. 893-944 | Article | MR: 2543918 | Zbl: 1170.53031

[15] Harvey, F. Reese; Lawson, H. Blaine Jr. Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differential Geom., Tome 88 (2011) no. 3, pp. 395-482 | MR: 2844439 | Zbl: 1235.53042

[16] Harvey, F. Reese; Lawson, H. Blaine Jr. Plurisubharmonicity in a general geometric context, Geometry and analysis. No. 1 (Adv. Lect. Math. (ALM)) Tome 17, Int. Press, Somerville, MA, 2011, pp. 363-402 | Zbl: 1271.31011

[17] Harvey, F. Reese; Lawson, H. Blaine Jr. Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Surveys in Geometry (Cao, H.-D.; eds., S.-T. Yau, eds.), Tome 18, International Press, Sommerville, MA, 2013, pp. 103-156 | Zbl: pre06296845

[18] Hunt, L. R.; Murray, John J. q-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J., Tome 25 (1978) no. 3, pp. 299-316 | Article | MR: 512901 | Zbl: 0378.32013

[19] Krylov, N. V. On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc., Tome 347 (1995) no. 3, pp. 857-895 | Article | MR: 1284912 | Zbl: 0832.35042

[20] Lawson, H. Blaine Jr. Lectures on minimal submanifolds. Vol. I, Mathematics Lecture Series, Tome 9, Publish or Perish Inc., Wilmington, Del., 1980, iv+178 pages | MR: 576752 | Zbl: 0434.53006

[21] Nijenhuis, Albert; Woolf, William B. Some integration problems in almost-complex and complex manifolds., Ann. of Math. (2), Tome 77 (1963), pp. 424-489 | Article | MR: 149505 | Zbl: 0115.16103

[22] Pali, Nefton Fonctions plurisousharmoniques et courants positifs de type (1,1) sur une variété presque complexe, Manuscripta Math., Tome 118 (2005) no. 3, pp. 311-337 | Article | MR: 2183042 | Zbl: 1089.32033

[23] Slodkowski, Zbigniew The Bremermann-Dirichlet problem for q-plurisubharmonic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 11 (1984) no. 2, pp. 303-326 | Numdam | MR: 764948 | Zbl: 0583.32046

Cited by Sources: