Soit une classe harmonique de Brelot, définie sur . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de . Si est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” qui satisfait le critère de régularité et . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.
@article{AIF_1968__18_1_283_0,
author = {Loeb, Peter and Walsh, Bertram},
title = {A maximal regular boundary for solutions of elliptic differential equations},
journal = {Annales de l'Institut Fourier},
pages = {283--308},
year = {1968},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {18},
number = {1},
doi = {10.5802/aif.284},
zbl = {0167.40302},
mrnumber = {39 #4423},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.284/}
}
TY - JOUR AU - Loeb, Peter AU - Walsh, Bertram TI - A maximal regular boundary for solutions of elliptic differential equations JO - Annales de l'Institut Fourier PY - 1968 SP - 283 EP - 308 VL - 18 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.284/ DO - 10.5802/aif.284 LA - en ID - AIF_1968__18_1_283_0 ER -
%0 Journal Article %A Loeb, Peter %A Walsh, Bertram %T A maximal regular boundary for solutions of elliptic differential equations %J Annales de l'Institut Fourier %D 1968 %P 283-308 %V 18 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.284/ %R 10.5802/aif.284 %G en %F AIF_1968__18_1_283_0
Loeb, Peter; Walsh, Bertram. A maximal regular boundary for solutions of elliptic differential equations. Annales de l'Institut Fourier, Tome 18 (1968) no. 1, pp. 283-308. doi: 10.5802/aif.284
[1] , Lectures on Potential Theory, Tata Inst. of Fundamental Research, Bombay, 1960. | Zbl | MR
[2] and , Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. (2) 32 (1963). | Zbl | MR
[3] and , Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. | Zbl | MR
[4] , Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024. | Zbl | MR
[5] , An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16,2 (1966), 167-208. | Numdam | Zbl | MR | EuDML
[6] , A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18,2 (1967), 282-283. | Zbl | MR
[7] and , The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. | Numdam | Zbl | MR | EuDML
[8] , Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Abstract 623-18, Notices Amer. Math. Soc. 12 (1965), 355.
[9] , Decompositions of operator algebras, I, Memoirs Amer. Math. Soc. 9 (1951). | Zbl | MR
[10] , The Feller and Šilov boundaries of a vector lattice, Illinois J. Math. 10 (1966), 680-693. | Zbl | MR
[11] and , Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. | Zbl | MR
Cité par Sources :



