Soit une classe harmonique de Brelot, définie sur . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de . Si est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” qui satisfait le critère de régularité et . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.
@article{AIF_1968__18_1_283_0, author = {Loeb, Peter and Walsh, Bertram}, title = {A maximal regular boundary for solutions of elliptic differential equations}, journal = {Annales de l'Institut Fourier}, pages = {283--308}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, number = {1}, year = {1968}, doi = {10.5802/aif.284}, zbl = {0167.40302}, mrnumber = {39 #4423}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.284/} }
TY - JOUR AU - Loeb, Peter AU - Walsh, Bertram TI - A maximal regular boundary for solutions of elliptic differential equations JO - Annales de l'Institut Fourier PY - 1968 SP - 283 EP - 308 VL - 18 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.284/ DO - 10.5802/aif.284 LA - en ID - AIF_1968__18_1_283_0 ER -
%0 Journal Article %A Loeb, Peter %A Walsh, Bertram %T A maximal regular boundary for solutions of elliptic differential equations %J Annales de l'Institut Fourier %D 1968 %P 283-308 %V 18 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.284/ %R 10.5802/aif.284 %G en %F AIF_1968__18_1_283_0
Loeb, Peter; Walsh, Bertram. A maximal regular boundary for solutions of elliptic differential equations. Annales de l'Institut Fourier, Tome 18 (1968) no. 1, pp. 283-308. doi : 10.5802/aif.284. https://aif.centre-mersenne.org/articles/10.5802/aif.284/
[1] Lectures on Potential Theory, Tata Inst. of Fundamental Research, Bombay, 1960. | MR | Zbl
,[2] Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. (2) 32 (1963). | MR | Zbl
and ,[3] Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. | MR | Zbl
and ,[4] Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024. | MR | Zbl
,[5] An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16,2 (1966), 167-208. | EuDML | Numdam | MR | Zbl
,[6] A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18,2 (1967), 282-283. | MR | Zbl
,[7] The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. | EuDML | Numdam | MR | Zbl
and ,[8] Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Abstract 623-18, Notices Amer. Math. Soc. 12 (1965), 355.
,[9] Decompositions of operator algebras, I, Memoirs Amer. Math. Soc. 9 (1951). | MR | Zbl
,[10] The Feller and Šilov boundaries of a vector lattice, Illinois J. Math. 10 (1966), 680-693. | MR | Zbl
,[11] Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. | MR | Zbl
and ,Cité par Sources :