We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.
Nous démontrons en dimension un la stabilité dans l’espace d’énergie des sommes de solitons de l’équation de Gross-Pitaevskii, dont les vitesses sont non nulles et deux-à-deux distinctes, et dont les positions initiales sont suffisamment espacées et ordonnées selon les vitesses des solitons.
Keywords: Gross-Pitaevskii equation, sums of solitons, stability
Mots-clés : Équation de Gross-Pitaevskii, sommes de solitons, stabilité
Béthuel, Fabrice 1; Gravejat, Philippe 2; Smets, Didier 1
@article{AIF_2014__64_1_19_0, author = {B\'ethuel, Fabrice and Gravejat, Philippe and Smets, Didier}, title = {Stability in the energy space for chains of~solitons of the one-dimensional {Gross-Pitaevskii} equation}, journal = {Annales de l'Institut Fourier}, pages = {19--70}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2838}, mrnumber = {3330540}, zbl = {06387265}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2838/} }
TY - JOUR AU - Béthuel, Fabrice AU - Gravejat, Philippe AU - Smets, Didier TI - Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation JO - Annales de l'Institut Fourier PY - 2014 SP - 19 EP - 70 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2838/ DO - 10.5802/aif.2838 LA - en ID - AIF_2014__64_1_19_0 ER -
%0 Journal Article %A Béthuel, Fabrice %A Gravejat, Philippe %A Smets, Didier %T Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation %J Annales de l'Institut Fourier %D 2014 %P 19-70 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2838/ %R 10.5802/aif.2838 %G en %F AIF_2014__64_1_19_0
Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier. Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 19-70. doi : 10.5802/aif.2838. https://aif.centre-mersenne.org/articles/10.5802/aif.2838/
[1] Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (Contemp. Math.), Volume 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55-104 | MR | Zbl
[2] Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, Volume 57 (2008) no. 6, pp. 2611-2642 | DOI | MR | Zbl
[3] On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., Volume 2009 (2009) no. 14, pp. 2700-2748 | MR | Zbl
[4] On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations, Volume 35 (2010) no. 1, pp. 113-164 | DOI | MR | Zbl
[5] Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012) no. 3, pp. 813-850 | DOI | MR | Zbl
[6] The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 42 (2010) no. 1, pp. 64-96 | DOI | MR | Zbl
[7] Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, Pure and Applied Mathematics, 7, Interscience Publishers, John Wiley and Sons, New York-London-Sydney, 1963 (With the assistance of W.G. Bade and R.G. Bartle) | MR | Zbl
[8] Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2007 (Translated by A.G. Reyman) | MR | Zbl
[9] Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Volume 9 (2004) no. 5-6, pp. 509-538 | MR | Zbl
[10] The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | Zbl
[11] Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., Volume 91 (2009) no. 2, pp. 178-210 | DOI | MR | Zbl
[12] Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR | Zbl
[13] Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, Volume 7 (2002) no. 8, pp. 897-918 | MR | Zbl
[14] Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 39-79 | DOI | MR | Zbl
[15] Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011) no. 3, pp. 563-648 | DOI | MR | Zbl
[16] Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl
[17] Stability in of the sum of solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | DOI | MR | Zbl
[18] The Korteweg- de Vries equation: a survey of results, SIAM Rev., Volume 18 (1976) no. 3, pp. 412-459 | DOI | MR | Zbl
[19]
(PhD thesis In preparation)[20] Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom., Volume 5 (2002) no. 4, pp. 319-413 | DOI | MR | Zbl
[21] Interaction between solitons in a stable medium, Sov. Phys. JETP, Volume 37 (1973), pp. 823-828
[22] Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, Lecture Notes in Mathematics, 1756, Springer-Verlag, Berlin, 2001 | MR | Zbl
Cited by Sources: