Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
[Stabilité dans l’espace d’énergie pour les chaînes de solitons de l’équation de Gross-Pitaevskii en dimension un]
Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 19-70.

Nous démontrons en dimension un la stabilité dans l’espace d’énergie des sommes de solitons de l’équation de Gross-Pitaevskii, dont les vitesses sont non nulles et deux-à-deux distinctes, et dont les positions initiales sont suffisamment espacées et ordonnées selon les vitesses des solitons.

We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.

DOI : 10.5802/aif.2838
Classification : 35B35, 35Q51, 35Q55
Keywords: Gross-Pitaevskii equation, sums of solitons, stability
Mot clés : Équation de Gross-Pitaevskii, sommes de solitons, stabilité

Béthuel, Fabrice 1 ; Gravejat, Philippe 2 ; Smets, Didier 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France.
2 Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.
@article{AIF_2014__64_1_19_0,
     author = {B\'ethuel, Fabrice and Gravejat, Philippe and Smets, Didier},
     title = {Stability in the energy space for chains of~solitons of the one-dimensional {Gross-Pitaevskii} equation},
     journal = {Annales de l'Institut Fourier},
     pages = {19--70},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.5802/aif.2838},
     mrnumber = {3330540},
     zbl = {06387265},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2838/}
}
TY  - JOUR
AU  - Béthuel, Fabrice
AU  - Gravejat, Philippe
AU  - Smets, Didier
TI  - Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 19
EP  - 70
VL  - 64
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2838/
DO  - 10.5802/aif.2838
LA  - en
ID  - AIF_2014__64_1_19_0
ER  - 
%0 Journal Article
%A Béthuel, Fabrice
%A Gravejat, Philippe
%A Smets, Didier
%T Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
%J Annales de l'Institut Fourier
%D 2014
%P 19-70
%V 64
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2838/
%R 10.5802/aif.2838
%G en
%F AIF_2014__64_1_19_0
Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier. Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 19-70. doi : 10.5802/aif.2838. https://aif.centre-mersenne.org/articles/10.5802/aif.2838/

[1] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Farina, A.; Saut, J.-C. Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (Contemp. Math.), Volume 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55-104 | MR | Zbl

[2] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, Volume 57 (2008) no. 6, pp. 2611-2642 | DOI | MR | Zbl

[3] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., Volume 2009 (2009) no. 14, pp. 2700-2748 | MR | Zbl

[4] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations, Volume 35 (2010) no. 1, pp. 113-164 | DOI | MR | Zbl

[5] Chiron, D. Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012) no. 3, pp. 813-850 | DOI | MR | Zbl

[6] Chiron, D.; Rousset, F. The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 42 (2010) no. 1, pp. 64-96 | DOI | MR | Zbl

[7] Dunford, N.; Schwartz, J.T. Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, Pure and Applied Mathematics, 7, Interscience Publishers, John Wiley and Sons, New York-London-Sydney, 1963 (With the assistance of W.G. Bade and R.G. Bartle) | MR | Zbl

[8] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2007 (Translated by A.G. Reyman) | MR | Zbl

[9] Gallo, C. Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Volume 9 (2004) no. 5-6, pp. 509-538 | MR | Zbl

[10] Gérard, P. The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | Zbl

[11] Gérard, P.; Zhang, Z. Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., Volume 91 (2009) no. 2, pp. 178-210 | DOI | MR | Zbl

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR | Zbl

[13] Lin, Z. Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, Volume 7 (2002) no. 8, pp. 897-918 | MR | Zbl

[14] Martel, Y.; Merle, F. Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 39-79 | DOI | MR | Zbl

[15] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011) no. 3, pp. 563-648 | DOI | MR | Zbl

[16] Martel, Y.; Merle, F.; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl

[17] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | DOI | MR | Zbl

[18] Miura, R.M. The Korteweg- de Vries equation: a survey of results, SIAM Rev., Volume 18 (1976) no. 3, pp. 412-459 | DOI | MR | Zbl

[19] Tartousi, H.M. (PhD thesis In preparation)

[20] Vartanian, A.H. Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom., Volume 5 (2002) no. 4, pp. 319-413 | DOI | MR | Zbl

[21] Zakharov, V.E.; Shabat, A.B. Interaction between solitons in a stable medium, Sov. Phys. JETP, Volume 37 (1973), pp. 823-828

[22] Zhidkov, P.E. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, Lecture Notes in Mathematics, 1756, Springer-Verlag, Berlin, 2001 | MR | Zbl

Cité par Sources :