Nous généralisons la solution de Kronecker des équations Pell aux corps CM dont le groupe de Galois sur est un 2-groupe abélien élémentaire. Il s’agit d’une formule qui relie les valeurs CM d’une certaine fonction modulaire de Hilbert aux produits de logarithmes des unités fondamentales. Lorsque est quadratique imaginaire, ces valeurs CM sont des nombres algébriques reliés aux unités elliptiques des corps de classes de Hilbert de . Sous l’hypothèse que la conjecture de Schanuel soit vraie, nous montrons que, lorsque et de degré plus grand que 2 sur , ces valeurs CM sont transcendantes.
We generalize Kronecker’s solution of Pell’s equation to CM fields whose Galois group over is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of . Assuming Schanuel’s conjecture, we show that when has degree greater than 2 over these CM values are transcendental.
Keywords: CM point, Hilbert modular function, Pell’s equation
Mot clés : point CM, fonction modulaire de Hilbert, équation Pell
Masri, Riad 1
@article{AIF_2013__63_6_2287_0, author = {Masri, Riad}, title = {Kronecker{\textquoteright}s solution of {Pell{\textquoteright}s} equation for {CM} fields}, journal = {Annales de l'Institut Fourier}, pages = {2287--2306}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2830}, mrnumber = {3237448}, zbl = {1295.11044}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2830/} }
TY - JOUR AU - Masri, Riad TI - Kronecker’s solution of Pell’s equation for CM fields JO - Annales de l'Institut Fourier PY - 2013 SP - 2287 EP - 2306 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2830/ DO - 10.5802/aif.2830 LA - en ID - AIF_2013__63_6_2287_0 ER -
%0 Journal Article %A Masri, Riad %T Kronecker’s solution of Pell’s equation for CM fields %J Annales de l'Institut Fourier %D 2013 %P 2287-2306 %V 63 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2830/ %R 10.5802/aif.2830 %G en %F AIF_2013__63_6_2287_0
Masri, Riad. Kronecker’s solution of Pell’s equation for CM fields. Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2287-2306. doi : 10.5802/aif.2830. https://aif.centre-mersenne.org/articles/10.5802/aif.2830/
[1] On a certain function analogous to , Nagoya Math. J., Volume 40 (1970), pp. 193-211 | MR | Zbl
[2] CM-values of Hilbert modular functions, Invent. Math., Volume 163 (2006) no. 2, pp. 229-288 | DOI | MR | Zbl
[3] On the imaginary bicyclic biquadratic fields with class-number , Math. Comp., Volume 31 (1977) no. 140, pp. 1034-1042 | MR | Zbl
[4] Intersections of Hirzebruch-Zagier divisors and CM cycles, Lecture Notes in Mathematics, 2041, Springer, Heidelberg, 2012, pp. viii+140 | MR | Zbl
[5] On Kronecker’s limit formula in a totally imaginary quadratic field over a totally real algebraic number field, J. Math. Soc. Japan, Volume 17 (1965), pp. 411-424 | DOI | MR | Zbl
[6] Transcendental values of class group -functions, Math. Ann., Volume 351 (2011) no. 4, pp. 835-855 | DOI | MR | Zbl
[7] Transcendental values of class group -functions, II, Proc. Amer. Math. Soc., Volume 140 (2012) no. 9, pp. 3041-3047 | DOI | MR | Zbl
[8] Lectures on advanced analytic number theory, Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965, pp. iii+331+iii | MR | Zbl
[9] Diophantine approximation on linear algebraic groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 326, Springer-Verlag, Berlin, 2000, pp. xxiv+633 (Transcendence properties of the exponential function in several variables) | MR | Zbl
[10] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997, pp. xiv+487 | MR | Zbl
Cité par Sources :