We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
On prouve qu’une 3-orbifold close qui fibre sur une 2-orbifold hyperbolique et polygonale admet une famille de structures coniques hyperboliques qu’on voit comme une régénérescence du polygone, pourvu que son périmètre soit minimal.
Keywords: orbifold, hyperbolic cone 3-manifold, degeneration, hyperbolic polygon, perimeter
Mot clés : orbifold, 3-variété conique hyperbolique, dégénérescense, polygone hyperbolique, périmètre
Porti, Joan 1
@article{AIF_2013__63_5_1971_0, author = {Porti, Joan}, title = {Regenerating hyperbolic cone 3-manifolds from dimension 2}, journal = {Annales de l'Institut Fourier}, pages = {1971--2015}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {5}, year = {2013}, doi = {10.5802/aif.2820}, mrnumber = {3186514}, zbl = {1293.57012}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2820/} }
TY - JOUR AU - Porti, Joan TI - Regenerating hyperbolic cone 3-manifolds from dimension 2 JO - Annales de l'Institut Fourier PY - 2013 SP - 1971 EP - 2015 VL - 63 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2820/ DO - 10.5802/aif.2820 LA - en ID - AIF_2013__63_5_1971_0 ER -
%0 Journal Article %A Porti, Joan %T Regenerating hyperbolic cone 3-manifolds from dimension 2 %J Annales de l'Institut Fourier %D 2013 %P 1971-2015 %V 63 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2820/ %R 10.5802/aif.2820 %G en %F AIF_2013__63_5_1971_0
Porti, Joan. Regenerating hyperbolic cone 3-manifolds from dimension 2. Annales de l'Institut Fourier, Volume 63 (2013) no. 5, pp. 1971-2015. doi : 10.5802/aif.2820. https://aif.centre-mersenne.org/articles/10.5802/aif.2820/
[1] Déformation de structures hyperboliques coniques, Thèse, Université Paul Sabatier, Toulouse, 2009
[2] Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 1, pp. 57-62 | DOI | MR | Zbl
[3] Geometrization of 3-dimensional orbifolds, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 195-290 | DOI | MR | Zbl
[4] Geometrization of 3-orbifolds of cyclic type, Astérisque (2001) no. 272, pp. 208 (Appendix A by Michael Heusener and Porti) | MR
[5] The classification of Seifert fibred -orbifolds, Low-dimensional topology (Chelwood Gate, 1982) (London Math. Soc. Lecture Note Ser.), Volume 95, Cambridge Univ. Press, Cambridge, 1985, pp. 19-85 | MR | Zbl
[6] Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000 (With a postface by Sadayoshi Kojima) | MR | Zbl
[7] Lifting representations to covering groups, Adv. in Math., Volume 59 (1986) no. 1, pp. 64-70 | DOI | MR | Zbl
[8] Varieties of group representations and splittings of -manifolds, Ann. of Math. (2), Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl
[9] Geometric transitions: from hyperbolic to AdS geometry, Thesis, Stanford University, 2011
[10] Elementary geometry in hyperbolic space, de Gruyter Studies in Mathematics, 11, Walter de Gruyter & Co., Berlin, 1989 (With an editorial by Heinz Bauer) | MR | Zbl
[11] Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. (2004) no. 9, pp. 425-459 | DOI | MR | Zbl
[12] The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984) no. 2, pp. 200-225 | DOI | MR | Zbl
[13] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986) no. 2, pp. 263-302 | DOI | MR | Zbl
[14] The complex-symplectic geometry of -characters over surfaces, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 375-407 | MR | Zbl
[15] On the character variety of group representations in and , Math. Z., Volume 214 (1993) no. 4, pp. 627-652 | DOI | MR | Zbl
[16] The variety of characters in , Bol. Soc. Mat. Mexicana (3), Volume 10 (2004) no. Special Issue, pp. 221-237 | MR | Zbl
[17] Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds, Thesis, Princeton University, 1986
[18] Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR | Zbl
[19] The Nielsen realization problem, Ann. of Math. (2), Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl
[20] Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985) no. 336, pp. xi+117 | MR | Zbl
[21] Outer circles, Cambridge University Press, Cambridge, 2007 (An introduction to hyperbolic 3-manifolds) | DOI | MR | Zbl
[22] Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology, Volume 37 (1998) no. 2, pp. 365-392 | DOI | MR | Zbl
[23] Hyperbolic polygons of minimal perimeter with given angles, Geom. Dedicata, Volume 156 (2012), pp. 165-170 | DOI | MR | Zbl
[24] Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc., Volume 359 (2007) no. 5, pp. 2155-2189 | DOI | MR | Zbl
[25] Remarks on the cohomology of groups, Ann. of Math. (2), Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[26] Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Volume 71 (2005) no. 3, pp. 437-506 | MR | Zbl
[27] Global rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Volume 76 (2007) no. 3, pp. 495-523 http://projecteuclid.org/getRecord?id=euclid.jdg/1180135696 | MR | Zbl
[28] The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than , arXiv:0904.4568, 2009, to appear in Geom. and Top | MR | Zbl
Cited by Sources: