Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
[Homologie et cohomologie de Hochschild des algèbres de Weyl généralisées : le cas quantique]
Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 923-956.

Nous déterminons l’homologie et la cohomologie de Hochschild des algèbres de Weyl généralisées de rang un dans le cas quantique sauf dans quelques cas exceptionnels.

We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.

Reçu le :
Accepté le :
DOI : 10.5802/aif.2780
Classification : 16E40, 16E65, 16U80, 16W50, 16W70
Keywords: generalized Weyl algebra, Hochschild cohomology, global dimension
Mot clés : algèbre de Weyl généralisée, cohomologie de Hochschild, dimension globale

Solotar, Andrea 1 ; Suárez-Alvarez, Mariano 1 ; Vivas, Quimey 1

1 Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 1428, Buenos Aires, Argentina.
@article{AIF_2013__63_3_923_0,
     author = {Solotar, Andrea and Su\'arez-Alvarez, Mariano and Vivas, Quimey},
     title = {Hochschild homology and cohomology of {Generalized} {Weyl} algebras: the quantum case},
     journal = {Annales de l'Institut Fourier},
     pages = {923--956},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.5802/aif.2780},
     mrnumber = {3137476},
     zbl = {1294.16007},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2780/}
}
TY  - JOUR
AU  - Solotar, Andrea
AU  - Suárez-Alvarez, Mariano
AU  - Vivas, Quimey
TI  - Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 923
EP  - 956
VL  - 63
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2780/
DO  - 10.5802/aif.2780
LA  - en
ID  - AIF_2013__63_3_923_0
ER  - 
%0 Journal Article
%A Solotar, Andrea
%A Suárez-Alvarez, Mariano
%A Vivas, Quimey
%T Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
%J Annales de l'Institut Fourier
%D 2013
%P 923-956
%V 63
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2780/
%R 10.5802/aif.2780
%G en
%F AIF_2013__63_3_923_0
Solotar, Andrea; Suárez-Alvarez, Mariano; Vivas, Quimey. Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case. Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 923-956. doi : 10.5802/aif.2780. https://aif.centre-mersenne.org/articles/10.5802/aif.2780/

[1] Avramov, Luchezar L.; Iyengar, Srikanth Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 789-804 | DOI | MR | Zbl

[2] Avramov, Luchezar L.; Vigué-Poirrier, Micheline Hochschild homology criteria for smoothness, Internat. Math. Res. Notices (1992) no. 1, pp. 17-25 | DOI | MR | Zbl

[3] BACH A Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv., Volume 69 (1994) no. 2, pp. 163-168 | MR | Zbl

[4] Bavula, V. V. Generalized Weyl algebras and their representations, Algebra i Analiz, Volume 4 (1992) no. 1, pp. 75-97 | MR | Zbl

[5] Bavula, Vladimir Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) (CMS Conf. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 1996, pp. 81-107 | MR | Zbl

[6] Bergh, Petter Andreas; Erdmann, Karin Homology and cohomology of quantum complete intersections, Algebra Number Theory, Volume 2 (2008) no. 5, pp. 501-522 | DOI | MR | Zbl

[7] Bergh, Petter Andreas; Madsen, Dag Hochschild homology and global dimension, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 473-482 | DOI | MR | Zbl

[8] Buchweitz, Ragnar-Olaf; Green, Edward L.; Madsen, Dag; Solberg, Øyvind Finite Hochschild cohomology without finite global dimension, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 805-816 | DOI | MR | Zbl

[9] Farinati, M. A.; Solotar, A.; Suárez-Álvarez, M. Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 2, pp. 465-488 http://aif.cedram.org/item?id=AIF_2003__53_2_465_0 | DOI | Numdam | MR | Zbl

[10] Han, Yang Hochschild (co)homology dimension, J. London Math. Soc. (2), Volume 73 (2006) no. 3, pp. 657-668 | DOI | MR | Zbl

[11] Happel, Dieter Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) (Lecture Notes in Math.), Volume 1404, Springer, Berlin, 1989, pp. 108-126 | MR | Zbl

[12] Hochschild, G.; Kostant, Bertram; Rosenberg, Alex Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962), pp. 383-408 | DOI | MR | Zbl

[13] Richard, Lionel; Solotar, Andrea Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl., Volume 5 (2006) no. 3, pp. 271-285 | DOI | MR | Zbl

[14] Rodicio, Antonio G. Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv., Volume 65 (1990) no. 3, pp. 474-477 | DOI | MR | Zbl

[15] Rodicio, Antonio G. Commutative augmented algebras with two vanishing homology modules, Adv. Math., Volume 111 (1995) no. 1, pp. 162-165 | DOI | MR | Zbl

[16] Smith, S. P. A class of algebras similar to the enveloping algebra of sl (2), Trans. Amer. Math. Soc., Volume 322 (1990) no. 1, pp. 285-314 | DOI | MR | Zbl

[17] Solotar, Andrea; Vigué-Poirrier, Micheline Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc., Volume 138 (2010) no. 3, pp. 861-869 | DOI | MR | Zbl

Cité par Sources :