Soit un groupe unitaire défini sur un corps local non-Archimédien de caractéristique résiduelle impaire et soit le centralisateur d’un élément rationnel semi-simple de l’algèbre de Lie de . Nous démontrons qu’il existe une application affine injective -équivariante de l’immeuble de Bruhat-Tits de vers l’immeuble de Bruhat-Tits de qui préserve les filtrations de Moy-Prasad. La dernière propriété implique l’unicité comme suit : soient et des applications de vers qui préservent les filtrations de Moy-Prasad. Nous démontrons que et sont égales s’il n’y a pas de tore deployé dans le centre de la composante connexe de . En général, les deux diffèrent par une translation de si elles sont affines et vérifient une autre conditon faible.
Let be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let be the centralizer of a semisimple rational Lie algebra element of We prove that the Bruhat-Tits building of can be affinely and -equivariantly embedded in the Bruhat-Tits building of so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let and be maps from to which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of then and are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of
Keywords: Building, classical group over a local field, centralizer
Mot clés : immeuble, groupe classique sur un corps local, centralisateur
Skodlerack, Daniel 1
@article{AIF_2013__63_2_515_0, author = {Skodlerack, Daniel}, title = {The centralizer of a classical group and {Bruhat-Tits} buildings}, journal = {Annales de l'Institut Fourier}, pages = {515--546}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2768}, mrnumber = {3112840}, zbl = {06193039}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2768/} }
TY - JOUR AU - Skodlerack, Daniel TI - The centralizer of a classical group and Bruhat-Tits buildings JO - Annales de l'Institut Fourier PY - 2013 SP - 515 EP - 546 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2768/ DO - 10.5802/aif.2768 LA - en ID - AIF_2013__63_2_515_0 ER -
%0 Journal Article %A Skodlerack, Daniel %T The centralizer of a classical group and Bruhat-Tits buildings %J Annales de l'Institut Fourier %D 2013 %P 515-546 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2768/ %R 10.5802/aif.2768 %G en %F AIF_2013__63_2_515_0
Skodlerack, Daniel. The centralizer of a classical group and Bruhat-Tits buildings. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 515-546. doi : 10.5802/aif.2768. https://aif.centre-mersenne.org/articles/10.5802/aif.2768/
[1] Linear algebraic groups, Grad. Texts in Math., 126, Springer-Verlag, New York, 1991 (2nd enl. ed.) | MR | Zbl
[2] Building of and centralizers, Transform. Groups, Volume 7 (2002) no. 1, pp. 15-50 | DOI | MR | Zbl
[3] Smooth representations of GL(m,D), V: Endo-classes (2010) (arXiv:1004.5032v1)
[4] Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory, Volume 19 (2009) no. 1, pp. 55-78 | MR | Zbl
[5] Buildings, Springer-Verlag, New York, 1989 | MR | Zbl
[6] Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984) no. 60, pp. 197-376 | Numdam | MR | Zbl
[7] Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France, Volume 112 (1984) no. 2, pp. 259-301 | Numdam | MR | Zbl
[8] Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France, Volume 115 (1987) no. 2, pp. 141-195 | Numdam | MR | Zbl
[9] The admissible dual of via compact open subgroups, Ann. of Math. Studies, 129, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[10] The book of involutions, AMS Colloquium Publications, 44, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[11] Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math., Volume 518 (2000), pp. 213-241 | MR | Zbl
[12] Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory, Volume 19 (2009) no. 1, pp. 29-54 | MR | Zbl
[13] Unrefined minimal -types for -adic groups, Invent. Math., Volume 116 (1994) no. 1-3, pp. 393-408 | DOI | MR | Zbl
[14] Algebraic groups and number theory, Pure and Appl. Math., 139, Acad. press, Inc., BOSTON, 1994 (Transl. from the 1991 Russ. orig. by R. Rowen) | MR | Zbl
[15] On finite group actions on reductive groups and buildings, Invent. Math., Volume 147 (2002) no. 3, pp. 545-560 | DOI | MR | Zbl
[16] Quadratic and Hermitian Forms, Springer-Verlag, Berlin and Heidelberg, 1985 | MR | Zbl
[17] Représentations lisses de . I. Caractères simples, Bull. Soc. Math. France, Volume 132 (2004) no. 3, pp. 327-396 | Numdam | MR | Zbl
[18] Représentations lisses de . II. -extensions, Compos. Math., Volume 141 (2005) no. 6, pp. 1531-1550 | DOI | MR | Zbl
[19] Représentations lisses de . III. Types simples, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 6, pp. 951-977 | Numdam | MR | Zbl
[20] Représentations lisses de . IV. Représentations supercuspidales, J. Inst. Math. Jussieu, Volume 7 (2008) no. 3, pp. 527-574 | DOI | MR | Zbl
[21] Smooth Representations of VI: Semisimple Types (2011) (Int. Math. Res. Not.)
[22] Semisimple characters for p-adic classical groups, Duke Math. J., Volume 127 (2005) no. 1, pp. 123-173 | DOI | MR | Zbl
[23] Adeles and algebraic groups, Prog. in Math., 23, Birkhäuser Boston, Mass., 1982 | MR | Zbl
Cité par Sources :