Nous donnons une définition géométrique des formes surconvergentes de poids -adique quelconque. Ceci nous permet d’obtenir la théorie des familles -adiques de formes modulaires de Coleman et de reconstruire la courbe de Hecke de Coleman et Mazur sans utiliser la famille d’Eisenstein.
We give a geometric definition of overconvergent modular forms of any -adic weight. As an application, we reprove Coleman’s theory of -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.
Keywords: formes modulaires $p$-adiques, formes modulaires suronvergentes, courbes modulaires
Mot clés : $p$-adic modular forms, overconvergent modular forms, modular curves
Pilloni, Vincent 1
@article{AIF_2013__63_1_219_0, author = {Pilloni, Vincent}, title = {Overconvergent modular forms}, journal = {Annales de l'Institut Fourier}, pages = {219--239}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {1}, year = {2013}, doi = {10.5802/aif.2759}, mrnumber = {3097946}, zbl = {06177080}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2759/} }
TY - JOUR AU - Pilloni, Vincent TI - Overconvergent modular forms JO - Annales de l'Institut Fourier PY - 2013 SP - 219 EP - 239 VL - 63 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2759/ DO - 10.5802/aif.2759 LA - en ID - AIF_2013__63_1_219_0 ER -
Pilloni, Vincent. Overconvergent modular forms. Annales de l'Institut Fourier, Tome 63 (2013) no. 1, pp. 219-239. doi : 10.5802/aif.2759. https://aif.centre-mersenne.org/articles/10.5802/aif.2759/
[1] Geometric overconvergent modular forms (prépublication)
[2] Cohomologie rigide et cohomologie rigide à support propre, 1996 (Première partie, prépublication 96–03, disponible sur perso.univ-rennes1.fr/pierre.berthelot/)
[3] Eigenvarieties, -functions and Galois representations (London Math. Soc. Lecture Note Ser.), Volume 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59-120 | DOI | MR | Zbl
[4] Companion forms and weight one forms, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 905-919 | DOI | MR | Zbl
[5] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl
[6] The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996) (London Math. Soc. Lecture Note Ser.), Volume 254, Cambridge Univ. Press, Cambridge, 1998, pp. 1-113 | DOI | MR | Zbl
[7] Application de Hodge-Tate duale d’un groupe de Lubin-Tate, immeuble de Bruhat-Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Volume 140 (2007) no. 3, pp. 499-590 | DOI | MR | Zbl
[8] La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | DOI | MR | Zbl
[9] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 2, pp. 231-273 | Numdam | MR | Zbl
[10] -adic automorphic forms on reductive groups, Astérisque (2005) no. 298, pp. 147-254 (Automorphic forms. I) | MR | Zbl
[11] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 69-190. Lecture Notes in Mathematics, Vol. 350 | MR | Zbl
[12] Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin, 1974 | MR | Zbl
[13] Group schemes of prime order, Ann. Sci. École Norm. Sup. (4), Volume 3 (1970), pp. 1-21 | EuDML | Numdam | MR | Zbl
Cité par Sources :