Pour au moins 3, les fonctions de Dehn de et sont exponentielles. Hatcher et Vogtmann ont montré qu’elles étaient au plus exponentielles, et la borne inférieure a été établie par Bridson et Vogtmann dans le cas . Handel et Mosher ont complété la démonstration en ramenant la preuve de la borne inférieure pour au moins 4 au cas . Dans cet article, nous donnons un argument plus direct permettant de passer du cas au cas général.
For at least 3, the Dehn functions of and are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for bigger than 3 to the case . In this note we give a shorter, more direct proof of this last reduction.
Keywords: Automorphism groups of free groups, Dehn functions
Mot clés : groupes des automorphismes des groupes libres, Fonctions de Dehn
Bridson, Martin R. 1 ; Vogtmann, Karen 2
@article{AIF_2012__62_5_1811_0, author = {Bridson, Martin R. and Vogtmann, Karen}, title = {The {Dehn} functions of $Out(F_n)$ and $Aut(F_n)$}, journal = {Annales de l'Institut Fourier}, pages = {1811--1817}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {5}, year = {2012}, doi = {10.5802/aif.2736}, mrnumber = {3025154}, zbl = {1259.20048}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2736/} }
TY - JOUR AU - Bridson, Martin R. AU - Vogtmann, Karen TI - The Dehn functions of $Out(F_n)$ and $Aut(F_n)$ JO - Annales de l'Institut Fourier PY - 2012 SP - 1811 EP - 1817 VL - 62 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2736/ DO - 10.5802/aif.2736 LA - en ID - AIF_2012__62_5_1811_0 ER -
%0 Journal Article %A Bridson, Martin R. %A Vogtmann, Karen %T The Dehn functions of $Out(F_n)$ and $Aut(F_n)$ %J Annales de l'Institut Fourier %D 2012 %P 1811-1817 %V 62 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2736/ %R 10.5802/aif.2736 %G en %F AIF_2012__62_5_1811_0
Bridson, Martin R.; Vogtmann, Karen. The Dehn functions of $Out(F_n)$ and $Aut(F_n)$. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1811-1817. doi : 10.5802/aif.2736. https://aif.centre-mersenne.org/articles/10.5802/aif.2736/
[1] Translation lengths in , Geom. Dedicata, Volume 92 (2002), pp. 87-93 | DOI | MR | Zbl
[2] The geometry of the word problem, Invitations to geometry and topology (Oxf. Grad. Texts Math.), Volume 7, Oxford Univ. Press, Oxford, 2002, pp. 29-91 | MR | Zbl
[3] On the geometry of the automorphism group of a free group, Bull. Math Londres. Soc., Volume 27 (1995), pp. 544-552 | DOI | MR | Zbl
[4] Automorphism groups of free groups, surface groups and free abelian groups, Problems on mapping class groups and related topics (Proc. Sympos. Pure Math.), Volume 74, Amer. Math. Soc., Providence, RI, 2006, pp. 301-316 | MR | Zbl
[5] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | MR | Zbl
[6] Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl
[7] Lipschitz retraction and distortion for subgroups of , arXiv:1009.5018, 2010
[8] Isoperimetric inequalities for automorphism groups of free groups, Pacific J. Math., Volume 173 (1996) no. 2, pp. 425-441 | MR | Zbl
[9] Mapping class groups are automatic, Ann. of Math. (2), Volume 142 (1995) no. 2, pp. 303-384 | DOI | MR | Zbl
[10] The Dehn function of SL(n;) (2009) (arXiv:0912.2697v1)
Cité par Sources :