On semisimple classes and semisimple characters in finite reductive groups
[Sur les classes de conjugaison semi-simples et les caractères semi-simples des groupes réductifs finis]
Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1671-1716.

Dans cet article, on étudie les éléments de centralisateur non connexe du complexe de Brauer associé à un groupe algébrique simple G défini sur un corps fini. On déduit alors, lorsque le groupe fondamental est d’ordre premier, le nombre de classes de conjugaison semi-simples rationnelles de G dont les représentants ont un centralisateur non connexe. On étudie également l’extensibilité des caractères semisimples du groupe des points fixes G F à leur groupe d’inertie dans le groupe des automorphismes de G F , où F est l’endomorphisme de Frobenius de G relatif à la structure rationnelle. Comme conséquence, on montre qu’un groupe fini simple de type E 6 vérifie la condition inductive de McKay en caractéristique naturelle. Ce travail s’inscrit dans le programme général initialisé par Isaacs, Malle et Navarro pour prouver la conjecture de McKay en théorie des représentations des groupes finis.

In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group G defined over a finite field with corresponding Frobenius map F and derive the number of F-stable semisimple classes of G with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup G F to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type E 6 are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.

DOI : 10.5802/aif.2733
Classification : 20C33, 20G40, 20E45
Keywords: algebraic groups, semisimple classes, Brauer complex, semisimple characters, finite reductive groups, disconnected centralizers, inductive McKay condition.
Mot clés : groupes algébriques, classes semi-simples, complexe de Brauer, caractères semi-simples, groupes réductifs finis, centralisateurs non connexes, condition inductive de McKay.

Brunat, Olivier 1

1 Université Denis Diderot - Paris 7 UFR de Mathématiques 175, rue du Chevaleret F-75013 Paris.
@article{AIF_2012__62_5_1671_0,
     author = {Brunat, Olivier},
     title = {On semisimple classes and semisimple characters in finite reductive groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1671--1716},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {5},
     year = {2012},
     doi = {10.5802/aif.2733},
     mrnumber = {3025151},
     zbl = {1276.20009},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2733/}
}
TY  - JOUR
AU  - Brunat, Olivier
TI  - On semisimple classes and semisimple characters in finite reductive groups
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1671
EP  - 1716
VL  - 62
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2733/
DO  - 10.5802/aif.2733
LA  - en
ID  - AIF_2012__62_5_1671_0
ER  - 
%0 Journal Article
%A Brunat, Olivier
%T On semisimple classes and semisimple characters in finite reductive groups
%J Annales de l'Institut Fourier
%D 2012
%P 1671-1716
%V 62
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2733/
%R 10.5802/aif.2733
%G en
%F AIF_2012__62_5_1671_0
Brunat, Olivier. On semisimple classes and semisimple characters in finite reductive groups. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1671-1716. doi : 10.5802/aif.2733. https://aif.centre-mersenne.org/articles/10.5802/aif.2733/

[1] Bonnafé, C. Éléments unipotents réguliers des sous-groupes de Levi, Canad. J. Math., Volume 56 (2004) no. 2, pp. 246-276 | DOI | MR | Zbl

[2] Bonnafé, Cédric Quasi-isolated elements in reductive groups, Comm. Algebra, Volume 33 (2005) no. 7, pp. 2315-2337 | DOI | MR | Zbl

[3] Bonnafé, Cédric Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque (2006) no. 306, pp. vi+165 | MR | Zbl

[4] Bourbaki, N. Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 (Translated from the 1968 French original by Andrew Pressley) | MR | Zbl

[5] Brunat, O.; Himstedt, F. On equivariant bijections relative to the defining characteristic, J. Algebra, Volume 334 (2011) no. 1, pp. 150-174 | DOI | MR

[6] Brunat, Olivier On the inductive McKay condition in the defining characteristic, Math. Z., Volume 263 (2009) no. 2, pp. 411-424 | DOI | MR | Zbl

[7] Brunat, Olivier Counting p -characters in finite reductive groups, J. Lond. Math. Soc. (2), Volume 81 (2010) no. 3, pp. 544-562 | DOI | MR

[8] Carter, R.W. Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972 (Pure and Applied Mathematics, Vol. 28) | MR | Zbl

[9] Carter, R.W. Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1985 (Conjugacy classes and complex characters, A Wiley-Interscience Publication) | MR | Zbl

[10] Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. of Math. (2), Volume 103 (1976) no. 1, pp. 103-161 | DOI | MR | Zbl

[11] Deriziotis, D. I. The Brauer complex of a Chevalley group, J. Algebra, Volume 70 (1981) no. 1, pp. 261-269 | DOI | MR | Zbl

[12] Digne, F.; Lehrer, G. I.; Michel, J. The characters of the group of rational points of a reductive group with non-connected centre, J. Reine Angew. Math., Volume 425 (1992), pp. 155-192 | MR | Zbl

[13] Digne, F.; Lehrer, G. I.; Michel, J. On Gel fand-Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math., Volume 491 (1997), pp. 131-147 | MR | Zbl

[14] Digne, F.; Michel, J. Representations of finite groups of Lie type, London Mathematical Society Student Texts, 21, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[15] Digne, F.; Michel, J. Groupes réductifs non connexes, Ann. Sci. École Norm. Sup. (4), Volume 27 (1994) no. 3, pp. 345-406 | Numdam | MR | Zbl

[16] Digne, François; Michel, Jean Points fixes des automorphismes quasi-semi-simples, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 12, pp. 1055-1060 | DOI | MR | Zbl

[17] Gorenstein, D.; Lyons, R.; Solomon, R. The classification of the finite simple groups, Number 3, Mathematical Surveys and Monographs, 40, American Mathematical Society, Cambridge, 1991 | MR | Zbl

[18] Humphreys, James E. Ordinary and modular representations of Chevalley groups, Lecture Notes in Mathematics, Vol. 528, Springer-Verlag, Berlin, 1976 | MR | Zbl

[19] Isaacs, I.M. Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976 (Pure and Applied Mathematics, No. 69) | MR | Zbl

[20] Isaacs, I.M.; Malle, G.; Navarro, G. A reduction theorem for McKay conjecture, Invent. Math., Volume 170 (2007), pp. 33-101 | DOI | MR | Zbl

[21] Malle, Gunter Generalized Deligne-Lusztig characters, J. Algebra, Volume 159 (1993) no. 1, pp. 64-97 | DOI | MR | Zbl

[22] Maslowski, J. Equivariant character bijections in groups of Lie type, Dissertation, TU Kaiserslautern, 2010

[23] Sorlin, Karine Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes, Bull. Soc. Math. France, Volume 132 (2004) no. 2, pp. 157-199 | Numdam | MR | Zbl

[24] Späth, B. Inductive McKay condition in defining characteristic, preprint

[25] Springer, T. A. Linear algebraic groups, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2009 | MR | Zbl

Cité par Sources :