Generalized Staircases: Recurrence and Symmetry
Annales de l'Institut Fourier, Volume 62 (2012) no. 4, pp. 1581-1600.

We study infinite translation surfaces which are -covers of compact translation surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech groups.

Nous étudions les -revêtements de translation des surfaces de translation compactes. Nous donnons des conditions nécessaires pour que le groupe de Veech soit fuchsien du premier type, et une condition nécessaire et suffisante pour la récurrence du flot directionnel. En étendant des résultats de Hubert et Schmithüsen, nous donnons des exemples non-arithmétiques dont le groupe de Veech est un réseau et des exemples à groupe de Veech de type infini.

DOI: 10.5802/aif.2730
Classification: 11Y40, 12Y05, 37M99, 52C99
Keywords: Infinite translation surfaces, Veech groups, lattices, straightline flow
Mot clés : Surfaces de translation infini, Groupes de Veech, Reseau, Flot directionnel

Hooper, W. Patrick 1; Weiss, Barak 2

1 The City College of New York New York, NY, USA 10031
2 Ben Gurion University, Be’er Sheva, Israel 84105
@article{AIF_2012__62_4_1581_0,
     author = {Hooper, W. Patrick and Weiss, Barak},
     title = {Generalized {Staircases:} {Recurrence} and {Symmetry}},
     journal = {Annales de l'Institut Fourier},
     pages = {1581--1600},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.5802/aif.2730},
     mrnumber = {3025751},
     zbl = {1279.37035},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2730/}
}
TY  - JOUR
AU  - Hooper, W. Patrick
AU  - Weiss, Barak
TI  - Generalized Staircases: Recurrence and Symmetry
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1581
EP  - 1600
VL  - 62
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2730/
DO  - 10.5802/aif.2730
LA  - en
ID  - AIF_2012__62_4_1581_0
ER  - 
%0 Journal Article
%A Hooper, W. Patrick
%A Weiss, Barak
%T Generalized Staircases: Recurrence and Symmetry
%J Annales de l'Institut Fourier
%D 2012
%P 1581-1600
%V 62
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2730/
%R 10.5802/aif.2730
%G en
%F AIF_2012__62_4_1581_0
Hooper, W. Patrick; Weiss, Barak. Generalized Staircases: Recurrence and Symmetry. Annales de l'Institut Fourier, Volume 62 (2012) no. 4, pp. 1581-1600. doi : 10.5802/aif.2730. https://aif.centre-mersenne.org/articles/10.5802/aif.2730/

[1] Chamanara, R.; Gardiner, F. P.; Lakic, N. A hyperelliptic realization of the horseshoe and baker maps, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 6, pp. 1749-1768 | DOI | MR | Zbl

[2] Conze, J.P.; Gutkin, E., 2010 (in preparation)

[3] Fried, David Growth rate of surface homeomorphisms and flow equivalence, Ergodic Theory Dynam. Systems, Volume 5 (1985) no. 4, pp. 539-563 | DOI | MR | Zbl

[4] Gutkin, Eugene; Judge, Chris Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | DOI | MR | Zbl

[5] Herrlich, Frank; Schmithüsen, Gabriela An extraordinary origami curve, Math. Nachr., Volume 281 (2008) no. 2, pp. 219-237 | DOI | MR | Zbl

[6] Hooper, W. Patrick Dynamics on an infinite surface with the lattice property (2008) (preprint)

[7] Hubert, Pascal; Schmidt, Thomas A. Infinitely generated Veech groups, Duke Math. J., Volume 123 (2004) no. 1, pp. 49-69 | DOI | MR | Zbl

[8] Hubert, Pascal; Schmithüsen, Gabriela Infinite translation surfaces with infinitely generated Veech groups (2009) (preprint) | MR | Zbl

[9] Hubert, Pascal; Weiss, Barak DYNAMICS ON THE INFINITE STAIRCASE (2008) (preprint)

[10] Kenyon, Richard; Smillie, John Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000) no. 1, pp. 65-108 | DOI | MR | Zbl

[11] Kerckhoff, Steven; Masur, Howard; Smillie, John A rational billiard flow is uniquely ergodic in almost every direction, Bull. Amer. Math. Soc. (N.S.), Volume 13 (1985) no. 2, pp. 141-142 | DOI | MR | Zbl

[12] Masur, Howard; Smillie, John Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2), Volume 134 (1991) no. 3, pp. 455-543 | DOI | MR | Zbl

[13] Masur, Howard; Tabachnikov, Serge Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | MR | Zbl

[14] Matsuzaki, Katsuhiko; Taniguchi, Masahiko Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998 (Oxford Science Publications) | MR | Zbl

[15] McMullen, Curtis T. Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003) no. 2, pp. 191-223 | DOI | MR | Zbl

[16] Przytycki, Piotr; Schmithuesen, G.; Valdez, Ferran Veech groups of Loch Ness monsters, 2009 (http://arxiv.org/abs/0906.5268, preprint.) | arXiv

[17] Richards, I. On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl

[18] Schmidt, Klaus Cocycles on ergodic transformation groups, Macmillan Company of India, Ltd., Delhi, 1977 (Macmillan Lectures in Mathematics, Vol. 1) | MR | Zbl

[19] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

[20] Thurston, William P. Minimal stretch maps between hyperbolic surfaces, 1998 (eprint of 1986 preprint. See http://arxiv.org/abs/math/9801039.) | arXiv

[21] Valdez, J.F. Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata (To appear) | arXiv | MR | Zbl

[22] Veech, W. A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl

[23] Zemljakov, A. N.; Katok, A. B. Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975) no. 2, pp. 291-300 | MR | Zbl

[24] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl

Cited by Sources: