Nous étudions les -extensions dans un groupe classique -adique et obtenons une relation entre certaines -extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.
We study -extensions in a -adic classical group and we produce a relation between some -extensions by means of a Weil representation. We apply this to the study of reducibility points of some parabolically induced representations.
Mot clés : Corps local non archimédien, groupe classique, représentation de Weil, beta-extension, type semi-simple, caractère semi-simple, paire couvrante, algèbre de Hecke, points de réductibilité.
Keywords: Local non-archimedean field, classical group, Weil representation, beta-extension, semi-simple type, semi-simple character, cover, Hecke algebra, reducibility points.
Blondel, Corinne 1
@article{AIF_2012__62_4_1319_0, author = {Blondel, Corinne}, title = {Repr\'esentation de {Weil} et $\beta $-extensions}, journal = {Annales de l'Institut Fourier}, pages = {1319--1366}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {4}, year = {2012}, doi = {10.5802/aif.2724}, mrnumber = {3025745}, zbl = {1263.22010}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2724/} }
TY - JOUR AU - Blondel, Corinne TI - Représentation de Weil et $\beta $-extensions JO - Annales de l'Institut Fourier PY - 2012 SP - 1319 EP - 1366 VL - 62 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2724/ DO - 10.5802/aif.2724 LA - fr ID - AIF_2012__62_4_1319_0 ER -
%0 Journal Article %A Blondel, Corinne %T Représentation de Weil et $\beta $-extensions %J Annales de l'Institut Fourier %D 2012 %P 1319-1366 %V 62 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2724/ %R 10.5802/aif.2724 %G fr %F AIF_2012__62_4_1319_0
Blondel, Corinne. Représentation de Weil et $\beta $-extensions. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1319-1366. doi : 10.5802/aif.2724. https://aif.centre-mersenne.org/articles/10.5802/aif.2724/
[1] Algèbres de Hecke et séries principales généralisées de , Proc. London Math. Soc., Volume 85(3) (2002), pp. 659-685 | DOI | MR | Zbl
[2] Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N), Ann. scient. Ec. Norm. Sup., Volume 37 (2004), pp. 533-558 | EuDML | Numdam | MR | Zbl
[3] Covers and propagation in symplectic groups (Functional analysis IX, Various Publ. Ser. (Aarhus)), Volume 48 (2007), pp. 16-31 | MR | Zbl
[4] Genericity of supercuspidal representations of -adic , Compositio Math., Volume 145(1) (2009), pp. 213-246 | DOI | MR | Zbl
[5] The admissible dual of via compact open subgroups, Annals of Mathematics Studies 129, Princeton, 1993 | MR | Zbl
[6] Smooth representations of reductive -adic groups : structure theory via types, Proc. London Math. Soc., Volume 77 (1998), pp. 582-634 | DOI | MR | Zbl
[7] Semisimple types in , Compositio Math., Volume 119 (1999), pp. 53-97 | DOI | MR | Zbl
[8] The Local Langlands Conjecture for , Int. Math. Res. Not., Volume 2010 (2010), pp. 2987-3038 | MR | Zbl
[9] Weil representations associated to finite fields, J. of Algebra, Volume 46 (1977), pp. 54-101 | DOI | MR | Zbl
[10] Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups, Int. Math. Res. Not., Volume 2007 (2007) | MR | Zbl
[11] Induced cuspidal representations and generalised Hecke rings, Invent. Math., Volume 58 (1980), pp. 37-64 | DOI | MR | Zbl
[12] Discrete series for -adic and restrictions of representations of to appear in Canadian Journal of Mathematics (2011) | Zbl
[13] Level zero Hecke algebras and parabolic induction : the Siegel case for split classical groups, Int. Math. Res. Not., Volume 2006 (2006) | MR | Zbl
[14] Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales ; le cas des groupes classiques p-adiques, Ann. of Math., Volume 151 (2000), pp. 817-847 | DOI | MR | Zbl
[15] Tamely ramified intertwining algebras, Ann. of Math., Volume 114 (1993), pp. 1-54 | MR | Zbl
[16] An explicit construction of the metaplectic representation over a finite field, J. of Lie Theory, Volume 12 (2002), pp. 15-30 | MR | Zbl
[17] A proof of Langlands conjecture on Plancherel measure ; complementary series for p-adic groups, Ann. of Math., Volume 132 (1990), pp. 273-330 | DOI | MR | Zbl
[18] Special representations of reductive p-adic groups are not integrable, Ann. of Math., Volume 111 (1980), pp. 571-587 | DOI | MR | Zbl
[19] Double coset decomposition and intertwining, manuscripta math., Volume 106 (2001), pp. 349-364 | DOI | MR | Zbl
[20] Semisimple characters for -adic classical groups, Duke Math. J., Volume 127(1) (2005), pp. 123-173 | DOI | MR | Zbl
[21] The supercuspidal representations of -adic classical groups, Invent. Math., Volume 172 (2008), pp. 289-352 | DOI | MR | Zbl
[22] Weil representations of the symplectic group, J. of Algebra, Volume 208 (1998), pp. 662-686 | DOI | MR | Zbl
[23] Discrete series of classical groups, Canad. J. Math., Volume 52(5) (2000), pp. 1101-1120 | DOI | MR | Zbl
Cité par Sources :