Flows of flowable Reeb homeomorphisms
Annales de l'Institut Fourier, Volume 62 (2012) no. 3, pp. 887-897.

We consider a fixed point free homeomorphism h of the closed band B=×[0,1] which leaves each leaf of a Reeb foliation on B invariant. Assuming h is the time one of various topological flows, we compare the restriction of the flows on the boundary.

Considérons une homéomorphisme sans points fixes sur la bande fermé B=×[0,1] qui laisse un feuilletage de Reeb invariant et qui est le temps un des flots topologiques. Nous comparons les restrictions de plusieurs tels flots au bord de B.

DOI: 10.5802/aif.2711
Classification: 37E30
Keywords: Reeb foliations, homeomorphisms, topological conjugacy
Matsumoto, Shigenori 1

1 Nihon University Department of Mathematics College of Science and Technology 1-8-14 Kanda, Surugadai, Chiyoda-ku Tokyo, 101-8308 (Japan)
@article{AIF_2012__62_3_887_0,
     author = {Matsumoto, Shigenori},
     title = {Flows of flowable {Reeb} homeomorphisms},
     journal = {Annales de l'Institut Fourier},
     pages = {887--897},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.5802/aif.2711},
     zbl = {1350.37049},
     mrnumber = {3013811},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2711/}
}
TY  - JOUR
AU  - Matsumoto, Shigenori
TI  - Flows of flowable Reeb homeomorphisms
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 887
EP  - 897
VL  - 62
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2711/
UR  - https://zbmath.org/?q=an%3A1350.37049
UR  - https://www.ams.org/mathscinet-getitem?mr=3013811
UR  - https://doi.org/10.5802/aif.2711
DO  - 10.5802/aif.2711
LA  - en
ID  - AIF_2012__62_3_887_0
ER  - 
%0 Journal Article
%A Matsumoto, Shigenori
%T Flows of flowable Reeb homeomorphisms
%J Annales de l'Institut Fourier
%D 2012
%P 887-897
%V 62
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2711
%R 10.5802/aif.2711
%G en
%F AIF_2012__62_3_887_0
Matsumoto, Shigenori. Flows of flowable Reeb homeomorphisms. Annales de l'Institut Fourier, Volume 62 (2012) no. 3, pp. 887-897. doi : 10.5802/aif.2711. https://aif.centre-mersenne.org/articles/10.5802/aif.2711/

[1] Brouwer, LEJ Beweis des Ebenen Translationssatzes, Math. Ann., Volume 72 (1912) no. 1, pp. 37-54 | DOI | EuDML | JFM | MR

[2] Béguin, François; Le Roux, Frédéric Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. France, Volume 131 (2003) no. 2, pp. 149-210 | EuDML | Numdam | MR | Zbl

[3] De Kerékjártó, Béla Sur le groupe des transformations topologiques du plan, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), Volume 3 (1934) no. 3-4, pp. 393-400 | EuDML | JFM | Numdam | MR | Zbl

[4] Fathi, Albert An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math. (2), Volume 33 (1987) no. 3-4, pp. 315-322 | MR | Zbl

[5] Franks, John A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems, Volume 12 (1992) no. 2, pp. 217-226 | DOI | MR | Zbl

[6] Guillou, Lucien Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology, Volume 33 (1994) no. 2, pp. 331-351 | DOI | MR | Zbl

[7] Haefliger, André; Reeb, Georges Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2), Volume 3 (1957), pp. 107-125 | MR | Zbl

[8] Homma, Tatsuo; Terasaka, Hidetaka On the structure of the plane translation of Brouwer, Osaka Math. J., Volume 5 (1953), pp. 233-266 | MR | Zbl

[9] Le Roux, F.; O’Farrell, A. G.; Roginskaya, M.; Short, I. Flowability of plane homeomorphisms (Preprints in Arxiv) | MR | Zbl

[10] Le Roux, Frédéric Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 1, pp. 45-50 | DOI | MR | Zbl

[11] Nakayama, Hiromichi A non-flowable plane homeomorphism whose non-Hausdorff set consists of two disjoint lines, Houston J. Math., Volume 21 (1995) no. 3, pp. 569-572 | MR | Zbl

Cited by Sources: