Un corps de représentation pour un ordre non maximal dans une algèbre centrale simple est un sous-corps du corps de classes spinoriel d’ordres maximaux qui détermine l’ensemble de genres spinoriels d’ordres maximaux qui contiennent un conjugué de . Un ordre non maximal ne possède pas forcément un corps de représentation. Dans ce travail, nous montrons que chaque ordre commutatif a un corps de représentation et nous donnons une formule pour . Le résultat principal est prouvé pour des algèbres simples centrales sur des corps globaux arbitraires.
A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of . Not every non-maximal order has a representation field. In this work we prove that every commutative order has a representation field and give a formula for it. The main result is proved for central simple algebras over arbitrary global fields.
Keywords: maximal orders, central simple algebras, spinor genera, spinor class fields
Mot clés : ordres maximaux, algèbres centrales simples, genre spinoriel, corps de classes spinoriel
Arenas-Carmona, Luis 1
@article{AIF_2012__62_2_807_0, author = {Arenas-Carmona, Luis}, title = {Representation fields for commutative orders}, journal = {Annales de l'Institut Fourier}, pages = {807--819}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2695}, mrnumber = {2985517}, zbl = {1269.11115}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2695/} }
TY - JOUR AU - Arenas-Carmona, Luis TI - Representation fields for commutative orders JO - Annales de l'Institut Fourier PY - 2012 SP - 807 EP - 819 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2695/ DO - 10.5802/aif.2695 LA - en ID - AIF_2012__62_2_807_0 ER -
%0 Journal Article %A Arenas-Carmona, Luis %T Representation fields for commutative orders %J Annales de l'Institut Fourier %D 2012 %P 807-819 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2695/ %R 10.5802/aif.2695 %G en %F AIF_2012__62_2_807_0
Arenas-Carmona, Luis. Representation fields for commutative orders. Annales de l'Institut Fourier, Tome 62 (2012) no. 2, pp. 807-819. doi : 10.5802/aif.2695. https://aif.centre-mersenne.org/articles/10.5802/aif.2695/
[1] Spinor class fields for sheaves of lattices (Preprint, arXiv:1009.3280v1 [math.NT] 16 Sep 2010)
[2] Applications of spinor class fields: embeddings of orders and quaternionic lattices, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 7, pp. 2021-2038 | DOI | Numdam | MR
[3] Relative spinor class fields: a counterexample, Arch. Math. (Basel), Volume 91 (2008) no. 6, pp. 486-491 | DOI | MR
[4] L’arithmétique sur les algèbres de matrices, Herman, Paris, 1936 | Zbl
[5] An embedding theorem for quaternion algebras, J. London Math. Soc., Volume 60 (1999) no. 2, pp. 33-44 | DOI | MR | Zbl
[6] Embedding orders into central simple algebras (Preprint, arXiv:1006.3683v1 [math.NT] 18 Jun 2010)
[7] Introduction to quadratic forms, Academic press, New York, 1963 | MR | Zbl
[8] Maximal orders, Academic press, London, 1975 | MR | Zbl
[9] Split orders and convex polytopes in buildings, J. Number Theory, Volume 130 (2010) no. 1, pp. 101-115 | DOI | MR
[10] Basic Number Theory, Springer Verlag, Berlin, 1973 | Zbl
Cité par Sources :