This article studies components of Springer fibers for that are associated to closed orbits of on the flag variety of . These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of . We prove that if is a line bundle on the flag variety associated to a dominant weight, then the higher cohomology groups of the restriction of to these components vanish. We derive some consequences of localization theorems in equivariant cohomology and -theory, applied to these components. In the appendix we identify the tableaux corresponding to these components, under the bijective correspondence between components of Springer fibers for and standard tableaux.
Cet article étudie les composantes des fibres de Springer pour qui sont associées à des orbites fermées de dans la variété de drapeaux de . Ces composantes apparaîssent dans toute fibre de Springer. En contraste avec le cas de composantes arbitraires, ces composantes sont des variétés lisses. En utilisant des résultats de Barchini et Zierau, nous montrons que ces composantes sont des fibrés itérés et sont stables sous l’action d’un tore maximal de . Nous démontrons que si est un fibré en droites sur la variété de drapeaux associée à un poids dominant, alors les groupes de cohomologie de degré supérieur de la restriction de à ces composantes s’annulent. Nous déduisons quelques conséquences des théorèmes de localisation en cohomologie équivariante et -théorie, appliqués à ces composantes. Dans l’appendice, nous indentifions les tableaux correspondants à ces composantes, via la correspondance bijective entre les composantes des fibres de Springer pour et les tableaux standard.
Keywords: Springer fibers, iterated bundles, flag varieties, nilpotent orbits
Mot clés : fibres de Springer, fibrés itérés, variété de drapeaux, orbites nilpotents
Graham, William 1; Zierau, R. 2
@article{AIF_2011__61_5_2139_0, author = {Graham, William and Zierau, R.}, title = {Smooth components of {Springer} fibers}, journal = {Annales de l'Institut Fourier}, pages = {2139--2182}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2669}, mrnumber = {2961851}, zbl = {1248.14056}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2669/} }
TY - JOUR AU - Graham, William AU - Zierau, R. TI - Smooth components of Springer fibers JO - Annales de l'Institut Fourier PY - 2011 SP - 2139 EP - 2182 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2669/ DO - 10.5802/aif.2669 LA - en ID - AIF_2011__61_5_2139_0 ER -
%0 Journal Article %A Graham, William %A Zierau, R. %T Smooth components of Springer fibers %J Annales de l'Institut Fourier %D 2011 %P 2139-2182 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2669/ %R 10.5802/aif.2669 %G en %F AIF_2011__61_5_2139_0
Graham, William; Zierau, R. Smooth components of Springer fibers. Annales de l'Institut Fourier, Volume 61 (2011) no. 5, pp. 2139-2182. doi : 10.5802/aif.2669. https://aif.centre-mersenne.org/articles/10.5802/aif.2669/
[1] The moment map and equivariant cohomology, Topology, Volume 23 (1984) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] Certain components of Springer fibers and associated cycles for discrete series representations of , Represent. Theory, Volume 12 (2008), pp. 403-434 (With an appendix by Peter E. Trapa) | DOI | MR | Zbl
[3] Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991 | MR | Zbl
[4] Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 1-37 (Notes by Alvaro Rittatore) | MR | Zbl
[5] Characteristic cycles of discrete series for -rank one groups, Trans. Amer. Math. Soc., Volume 341 (1994) no. 2, pp. 603-622 | DOI | MR | Zbl
[6] Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997 | MR | Zbl
[7] Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc., Volume 1 (1988) no. 1, pp. 15-34 | DOI | MR | Zbl
[8] Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math., Volume 120 (1998) no. 3, pp. 619-636 | DOI | MR | Zbl
[9] Betti numbers of Springer fibers in type , J. Algebra, Volume 322 (2009) no. 7, pp. 2566-2579 | DOI | MR | Zbl
[10] Singular components of Springer fibers in the two-column case, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2429-2444 | DOI | Numdam | MR | Zbl
[11] A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups, Volume 15 (2010) no. 2, pp. 285-331 | DOI | MR
[12] On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., Volume 178 (2003) no. 2, pp. 244-276 | DOI | MR | Zbl
[13] The annihilators of irreducible Harish-Chandra modules for and other type groups, Amer. J. Math., Volume 115 (1993) no. 2, pp. 305-369 | DOI | MR | Zbl
[14] Equivariant -theory and Schubert varieties (preprint)
[15] Positivity in equivariant Schubert calculus, Duke Math. J., Volume 109 (2001) no. 3, pp. 599-614 | DOI | MR | Zbl
[16] On positivity in -equivariant -theory of flag varieties, Int. Math. Res. Not. IMRN (2008), pp. Art. ID rnn 093, 43 | MR | Zbl
[17] Séminaire de géométrie algébrique. Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, 224, Springer-Verlag, Heidelberg, 1971 | MR
[18] On the homology classes for the components of some fibres of Springer’s resolution, Astérisque (1989) no. 173-174, pp. 257-269 (Orbites unipotentes et représentations, III) | MR | Zbl
[19] Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[20] A fixed point formula for action of tori on algebraic varieties, Invent. Math., Volume 16 (1972), pp. 229-236 | DOI | MR | Zbl
[21] Schubert patches degenerate to subword complexes, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 715-726 | DOI | MR | Zbl
[22] Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl
[23] Green polynomials and singularities of unipotent classes, Adv. in Math., Volume 42 (1981) no. 2, pp. 169-178 | DOI | MR | Zbl
[24] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994 | MR | Zbl
[25] Adjacency of Young tableaux and the Springer fibers, Selecta Math. (N.S.), Volume 12 (2006) no. 3-4, pp. 517-540 | MR | Zbl
[26] Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, 946, Springer-Verlag, Berlin, 1982 | MR | Zbl
[27] Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl
[28] A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl
[29] Contribution to Open problems in algebraic groups (1983) (Taniguchi Foundation, Katata)
[30] An occurrence of the Robinson-Schensted correspondence, J. Algebra, Volume 113 (1988) no. 2, pp. 523-528 | DOI | MR | Zbl
[31] Generalized Robinson-Schensted algorithms for real groups, Internat. Math. Res. Notices (1999) no. 15, pp. 803-834 | DOI | MR | Zbl
[32] Fixed points under the action of unipotent elements of in the flag variety, Bol. Soc. Mat. Mexicana (2), Volume 24 (1979) no. 1, pp. 1-14 | MR | Zbl
[33] Cohomologie et -théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux, Bull. Soc. Math. France, Volume 132 (2004) no. 4, pp. 569-589 | Numdam | MR | Zbl
Cited by Sources: