Every open manifold of dimension greater than one has complete Riemannian metrics with bounded geometry such that is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
Chaque variété ouverte de dimension plus grande que 1 possède des métriques Riemanniennes complètes g avec géométrie bornée telles que n’est pas quasi-isométrique à une feuille d’un feuilletage de codimension un d’une variété fermée. Donc il n’y a pas de conditions sur la géométrie locale de qui suffisent pour qu’elle soit quasi-isométrique à une feuille de tel feuilletage. Nous introduisons la « propriété d’homologie bornée », une propriété semi-locale de qui est nécessaire pour qu’elle puisse être feuille d’un feuilletage de codimension 1 d’une variété compacte, à une quasi-isométrie près. Une étape essentielle de la démonstration utilise une généralisation partielle du théorème de la feuille fermée de Novikov aux dimensions plus grandes.
Keywords: codimension one foliation, Reeb component, non-leaf, geometry of leaves, bounded homology property
Mot clés : feuilletages de codimension un, composante de Reeb, non-feuille, géométrie des feuilles, propriété d’homologie bornée
Schweitzer, Paul A. 1
@article{AIF_2011__61_4_1599_0, author = {Schweitzer, Paul A.}, title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations}, journal = {Annales de l'Institut Fourier}, pages = {1599--1631}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2653}, mrnumber = {2951506}, zbl = {1241.57036}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2653/} }
TY - JOUR AU - Schweitzer, Paul A. TI - Riemannian manifolds not quasi-isometric to leaves in codimension one foliations JO - Annales de l'Institut Fourier PY - 2011 SP - 1599 EP - 1631 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2653/ DO - 10.5802/aif.2653 LA - en ID - AIF_2011__61_4_1599_0 ER -
%0 Journal Article %A Schweitzer, Paul A. %T Riemannian manifolds not quasi-isometric to leaves in codimension one foliations %J Annales de l'Institut Fourier %D 2011 %P 1599-1631 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2653/ %R 10.5802/aif.2653 %G en %F AIF_2011__61_4_1599_0
Schweitzer, Paul A. Riemannian manifolds not quasi-isometric to leaves in codimension one foliations. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1599-1631. doi : 10.5802/aif.2653. https://aif.centre-mersenne.org/articles/10.5802/aif.2653/
[1] The structure of generalized Reeb components (2009) (Preprint)
[2] A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations (2010) (In preparation)
[3] Manifolds which cannot be leaves of foliations, Topology, Volume 35 (1996), pp. 335-353 | DOI | MR | Zbl
[4] Geometric Theory of Foliations, Birkhäuser Verlag, 1986 (Translation of Teoria Geométrica das Folheações, Projeto Euclides, IMPA, Rio de Janeiro, 1981) | MR
[5] Every surface is a leaf, Topology, Volume 26 (1987), pp. 265-285 | DOI | MR | Zbl
[6] Riemannian Geometry, Birkhäuser Verlag, 1998 (Translation of Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988) | MR
[7] Une variété qui n’est pas une feuille, Topology, Volume 24 (1985), pp. 67-73 | MR | Zbl
[8] Topologie des feuilles génériques, Annals of Math., Volume 141 (1995), pp. 387-422 | DOI | MR | Zbl
[9] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Volume 16 (1962), pp. 367-397 | EuDML | Numdam | MR | Zbl
[10] Travaux de Novikov sur les feuilletages, Séminaire Bourbaki, 1968 no. 339 | Numdam | Zbl
[11] Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976, Volume 652 (1978), pp. 141-182 | MR | Zbl
[12] Introduction to the geometry of foliations, B, Vieweg, Braunschweig, 1983 | MR
[13] Open manifolds which are non-realizable as leaves, Kodai Math. J., Volume 8 (1985), pp. 112-119 | DOI | MR | Zbl
[14] Characteristic invariants of noncompact Riemannian manifolds, Topology, Volume 23 (1984), pp. 299-302 | DOI | MR | Zbl
[15] Topology of foliations, Trans. Moscow Math. Soc., Volume 14 (1965), pp. 268-304 | MR | Zbl
[16] Geometry of leaves, Topology, Volume 20 (1981), pp. 209-218 | DOI | MR | Zbl
[17] Sur certaines propriétés topologiques des variétés feuilletées, Actual. Sci. Ind. 1183, Hermann, Paris, 1952 | MR | Zbl
[18] Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994 (1995), pp. 223-238 | MR | Zbl
[19] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv., Volume 4 (1972), pp. 123-163 | DOI | MR | Zbl
[20] Components of topological foliations (Russian), Mat. Sb. (N.S.), Volume 119 (1982), pp. 340-354 | MR | Zbl
[21] When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 622-624 | DOI | MR | Zbl
[22] Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
[23] A virtual leaf, Int. J., Bifur. and Chaos, Volume 7 (1996), pp. 1845-1852 | MR | Zbl
[24] An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium (1994), pp. 475-477 | MR
[25] Sturm-Liouville Theory, Amer. Math. Soc., Providence, 2005
Cited by Sources: