Chaque variété ouverte de dimension plus grande que 1 possède des métriques Riemanniennes complètes g avec géométrie bornée telles que n’est pas quasi-isométrique à une feuille d’un feuilletage de codimension un d’une variété fermée. Donc il n’y a pas de conditions sur la géométrie locale de qui suffisent pour qu’elle soit quasi-isométrique à une feuille de tel feuilletage. Nous introduisons la « propriété d’homologie bornée », une propriété semi-locale de qui est nécessaire pour qu’elle puisse être feuille d’un feuilletage de codimension 1 d’une variété compacte, à une quasi-isométrie près. Une étape essentielle de la démonstration utilise une généralisation partielle du théorème de la feuille fermée de Novikov aux dimensions plus grandes.
Every open manifold of dimension greater than one has complete Riemannian metrics with bounded geometry such that is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
Keywords: codimension one foliation, Reeb component, non-leaf, geometry of leaves, bounded homology property
Mot clés : feuilletages de codimension un, composante de Reeb, non-feuille, géométrie des feuilles, propriété d’homologie bornée
Schweitzer, Paul A. 1
@article{AIF_2011__61_4_1599_0, author = {Schweitzer, Paul A.}, title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations}, journal = {Annales de l'Institut Fourier}, pages = {1599--1631}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2653}, mrnumber = {2951506}, zbl = {1241.57036}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2653/} }
TY - JOUR AU - Schweitzer, Paul A. TI - Riemannian manifolds not quasi-isometric to leaves in codimension one foliations JO - Annales de l'Institut Fourier PY - 2011 SP - 1599 EP - 1631 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2653/ DO - 10.5802/aif.2653 LA - en ID - AIF_2011__61_4_1599_0 ER -
%0 Journal Article %A Schweitzer, Paul A. %T Riemannian manifolds not quasi-isometric to leaves in codimension one foliations %J Annales de l'Institut Fourier %D 2011 %P 1599-1631 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2653/ %R 10.5802/aif.2653 %G en %F AIF_2011__61_4_1599_0
Schweitzer, Paul A. Riemannian manifolds not quasi-isometric to leaves in codimension one foliations. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1599-1631. doi : 10.5802/aif.2653. https://aif.centre-mersenne.org/articles/10.5802/aif.2653/
[1] The structure of generalized Reeb components (2009) (Preprint)
[2] A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations (2010) (In preparation)
[3] Manifolds which cannot be leaves of foliations, Topology, Volume 35 (1996), pp. 335-353 | DOI | MR | Zbl
[4] Geometric Theory of Foliations, Birkhäuser Verlag, 1986 (Translation of Teoria Geométrica das Folheações, Projeto Euclides, IMPA, Rio de Janeiro, 1981) | MR
[5] Every surface is a leaf, Topology, Volume 26 (1987), pp. 265-285 | DOI | MR | Zbl
[6] Riemannian Geometry, Birkhäuser Verlag, 1998 (Translation of Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988) | MR
[7] Une variété qui n’est pas une feuille, Topology, Volume 24 (1985), pp. 67-73 | MR | Zbl
[8] Topologie des feuilles génériques, Annals of Math., Volume 141 (1995), pp. 387-422 | DOI | MR | Zbl
[9] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Volume 16 (1962), pp. 367-397 | EuDML | Numdam | MR | Zbl
[10] Travaux de Novikov sur les feuilletages, Séminaire Bourbaki, 1968 no. 339 | Numdam | Zbl
[11] Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976, Volume 652 (1978), pp. 141-182 | MR | Zbl
[12] Introduction to the geometry of foliations, B, Vieweg, Braunschweig, 1983 | MR
[13] Open manifolds which are non-realizable as leaves, Kodai Math. J., Volume 8 (1985), pp. 112-119 | DOI | MR | Zbl
[14] Characteristic invariants of noncompact Riemannian manifolds, Topology, Volume 23 (1984), pp. 299-302 | DOI | MR | Zbl
[15] Topology of foliations, Trans. Moscow Math. Soc., Volume 14 (1965), pp. 268-304 | MR | Zbl
[16] Geometry of leaves, Topology, Volume 20 (1981), pp. 209-218 | DOI | MR | Zbl
[17] Sur certaines propriétés topologiques des variétés feuilletées, Actual. Sci. Ind. 1183, Hermann, Paris, 1952 | MR | Zbl
[18] Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994 (1995), pp. 223-238 | MR | Zbl
[19] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv., Volume 4 (1972), pp. 123-163 | DOI | MR | Zbl
[20] Components of topological foliations (Russian), Mat. Sb. (N.S.), Volume 119 (1982), pp. 340-354 | MR | Zbl
[21] When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 622-624 | DOI | MR | Zbl
[22] Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
[23] A virtual leaf, Int. J., Bifur. and Chaos, Volume 7 (1996), pp. 1845-1852 | MR | Zbl
[24] An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium (1994), pp. 475-477 | MR
[25] Sturm-Liouville Theory, Amer. Math. Soc., Providence, 2005
Cité par Sources :