We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.
On donne une description des faces, des toutes codimensions, pour les cônes engendrés par l’ensemble des poids associés aux anneaux des semi-invariants des carquois. Pour un carquois de drapeaux triples et ses faces de codimension 1, la description est équivalente à un résultat de Knutson-Tao-Woodward sur les facettes du cône de Klyachko. On donne des nouvelles applications aux coefficients de Littlewood-Richardson, en particulier une formule pour les coefficients qui correspond à des triples de partitions sur un mur du cône de Klyachko. On commence par rappeler les méthodes utilisées (suites de Schur, les suites exceptionnelles, les catégories orthogonaux, les décompositions semi-stables, et les quotients GIT pour les carquois). Dans une appendice, on donne une variante d’une démonstration géométrique de Belkale d’une conjecture de Fulton qui est valable pour un carquois quelconque.
Keywords: Quiver representations, Klyachko cone, Littlewood-Richardson coefficients
Mot clés : representations des carquois, cône de Klyachko, coefficients de Littlewood-Richardson
Derksen, Harm 1; Weyman, Jerzy 2
@article{AIF_2011__61_3_1061_0, author = {Derksen, Harm and Weyman, Jerzy}, title = {The combinatorics of quiver representations}, journal = {Annales de l'Institut Fourier}, pages = {1061--1131}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2636}, mrnumber = {2918725}, zbl = {1271.16016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2636/} }
TY - JOUR AU - Derksen, Harm AU - Weyman, Jerzy TI - The combinatorics of quiver representations JO - Annales de l'Institut Fourier PY - 2011 SP - 1061 EP - 1131 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2636/ DO - 10.5802/aif.2636 LA - en ID - AIF_2011__61_3_1061_0 ER -
%0 Journal Article %A Derksen, Harm %A Weyman, Jerzy %T The combinatorics of quiver representations %J Annales de l'Institut Fourier %D 2011 %P 1061-1131 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2636/ %R 10.5802/aif.2636 %G en %F AIF_2011__61_3_1061_0
Derksen, Harm; Weyman, Jerzy. The combinatorics of quiver representations. Annales de l'Institut Fourier, Volume 61 (2011) no. 3, pp. 1061-1131. doi : 10.5802/aif.2636. https://aif.centre-mersenne.org/articles/10.5802/aif.2636/
[1] Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom., Volume 15 (2006) no. 1, pp. 133-176 | DOI | MR | Zbl
[2] Geometric proof of a conjecture of Fulton, Advances Math., Volume 216 (2007) no. 1, pp. 346-357 | DOI | MR | Zbl
[3] The saturation conjecture (after A. Knutson and T. Tao), With an appendix by William Fulton, Enseign. Math. (2), Volume 46 (2000) no. 1-2, pp. 43-60 | MR | Zbl
[4] Quivers, long exact sequences and Horn type inequalities, J. Algebra, Volume 320 (2008) no. 1, pp. 128-157 | DOI | MR | Zbl
[5] Quivers, long exact sequences and Horn type inequalities II, Glasg. Math. J., Volume 51 (2009) no. 2, pp. 201-217 | DOI | MR | Zbl
[6] Non-log-concave Littlewood-Richardson coefficients, Compos. Math., Volume 43 (2007) no. 6, pp. 1545-1557 | MR | Zbl
[7] Exceptional sequences of representations of quivers, Canadian Math. Soc. Conf. Proceedings, Volume 14 (1993), pp. 117-124 | MR | Zbl
[8] Subrepresentations of general representations of quivers, Bull. London Math. Soc., Volume 28 (1996) no. 4, pp. 363-366 | DOI | MR | Zbl
[9] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352 | DOI | MR | Zbl
[10] On the number of subrepresentations of a general quiver representation, J. London Math. Soc. (2), Volume 76 (2007) no. 1, pp. 135-147 | DOI | MR | Zbl
[11] Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, Journal of the AMS, Volume 13 (2000), pp. 467-579 | MR | Zbl
[12] On the canonical decomposition of quiver representations, Compositio Math., Volume 133 (2002), pp. 245-265 | DOI | MR | Zbl
[13] On the Littlewood-Richardson polynomials, J. Algebra, Volume 255 (2002) no. 2, pp. 247-257 | DOI | MR | Zbl
[14] The combinatorics of quiver representations, arXiv:math/0608288 | MR
[15] Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc., Volume 37 (2000) no. 3, pp. 209-249 | DOI | MR | Zbl
[16] Quivers, cones and polytopes, Linear Algebra Appl., Volume 365 (2003), pp. 215-237 (special issue on linear algebra methods in representation theory) | DOI | MR | Zbl
[17] Stable representations of quivers, J. Pure Appl. Algebra, Volume 172 (2002) no. 2-3, pp. 205-224 | DOI | MR | Zbl
[18] Eigenvalues of sums of Hermitian matrices, Pacific J. Math., Volume 12 (1962), pp. 620-630 | MR | Zbl
[19] Infinite root systems, representations of graphs and Invariant Theory, Invent. Math., Volume 56 (1980), pp. 57-92 | DOI | MR | Zbl
[20] Infinite Root Systems, Representations of Graphs and Invariant Theory II, J. Algebra, Volume 78 (1982), pp. 141-162 | DOI | MR | Zbl
[21] Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2), Volume 45 (1994), pp. 515-530 | DOI | MR | Zbl
[22] The hive model and the factorisation of Kostka coefficients, Sém. Lothar. Combin., Volume 54A (2005/07), pp. Art. B54Ah, 22 pp. (electronic) | MR | Zbl
[23] Factorisation of Littlewood-Richardson coefficients, J. Combin. Theory Ser. A, Volume 116 (2009) no. 2, pp. 314-333 | DOI | MR | Zbl
[24] The multiplication of Schur-functions and extensions of -modules, J. London Math. Soc., Volume 43 (1968), pp. 280-284 | DOI | MR | Zbl
[25] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), Volume 4 (1988) no. 3, pp. 419-445 | MR | Zbl
[26] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl
[27] The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl
[28] Semisimple representations of quivers, Trans. Amer. Math. Soc., Volume 317 (1990) no. 2, pp. 585-598 | DOI | MR | Zbl
[29] Geometric invariant theory and generalized eigenvalue problem II (arXiv:0903.1187) | Zbl
[30] GIT cones for quivers (arXiv: 0903.1202)
[31] Geometric invariant theory and the generalized eigenvalue problem, Invent. Math., Volume 180 (2010) no. 2, pp. 389-441 | DOI | MR | Zbl
[32] Representations of -species and bimodules, J. Algebra, Volume 41 (1976), pp. 269-302 | DOI | MR | Zbl
[33] Tame algebras and integral quadratic forms, Lecture Notes in Math., 1099, Springer, 1984 | MR | Zbl
[34] The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993) (Contemp. Math.), Volume 171, Amer. Math. Soc., Providence, RI, 1994, pp. 339-352 | MR | Zbl
[35] Stability for an abelian category, J. Algebra, Volume 197 (1997), pp. 231-245 | DOI | MR | Zbl
[36] Semi-invariants of Quivers, J. London Math. Soc., Volume 43 (1991), pp. 383-395 | DOI | MR | Zbl
[37] General Representations of Quivers, Proc. London Math. Soc. (3), Volume 65 (1992), pp. 46-64 | DOI | MR | Zbl
[38] Birational classification of moduli spaces of representations of quivers, Indag. Math., N.S., Volume 12 (3) (2001), pp. 407-432 | DOI | MR | Zbl
[39] Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math., N.S., Volume 12 (1) (2001), pp. 125-138 | DOI | MR | Zbl
[40] Schubert Induction, Annals of Math. (2), Volume 164 (2006) no. 2, pp. 489-512 | DOI | MR | Zbl
[41] Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann., Volume 71 (1912), pp. 441-479 | DOI | MR
Cited by Sources: