This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
Ce papier est consacré à l’existence des métriques conforme sur avec courbure scalaire prescrite. Nous étendons les critères d’existence bien connus de Bahri-Coron.
Keywords: Scalar curvature, critical points at infinity, topological method
Mot clés : courbure scalaire, points critiques à l’infini, méthode topologique
Mahmoud, Randa Ben 1; Chtioui, Hichem 
@article{AIF_2011__61_3_971_0, author = {Mahmoud, Randa Ben and Chtioui, Hichem}, title = {Existence results for the prescribed {Scalar} curvature on $S^{3}$}, journal = {Annales de l'Institut Fourier}, pages = {971--986}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2634}, mrnumber = {2918723}, zbl = {1235.35118}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2634/} }
TY - JOUR AU - Mahmoud, Randa Ben AU - Chtioui, Hichem TI - Existence results for the prescribed Scalar curvature on $S^{3}$ JO - Annales de l'Institut Fourier PY - 2011 SP - 971 EP - 986 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2634/ DO - 10.5802/aif.2634 LA - en ID - AIF_2011__61_3_971_0 ER -
%0 Journal Article %A Mahmoud, Randa Ben %A Chtioui, Hichem %T Existence results for the prescribed Scalar curvature on $S^{3}$ %J Annales de l'Institut Fourier %D 2011 %P 971-986 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2634/ %R 10.5802/aif.2634 %G en %F AIF_2011__61_3_971_0
Mahmoud, Randa Ben; Chtioui, Hichem. Existence results for the prescribed Scalar curvature on $S^{3}$. Annales de l'Institut Fourier, Volume 61 (2011) no. 3, pp. 971-986. doi : 10.5802/aif.2634. https://aif.centre-mersenne.org/articles/10.5802/aif.2634/
[1] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures et Appl., Volume 55 (1976), pp. 269-296 | MR | Zbl
[2] Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl., Volume 76 (1997) no. 10, pp. 843-850 | DOI | MR | Zbl
[3] Critical point at infinity in some variational problems, Pitman Res. Notes Math, Ser, 182, Longman Sci. Tech., Harlow, 1989 | MR | Zbl
[4] An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., Volume 81 (1996), pp. 323-466 | DOI | MR | Zbl
[5] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Volume 95 (1991), pp. 106-172 | DOI | MR | Zbl
[6] Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 561-649 | Numdam | MR | Zbl
[7] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677 | DOI | MR | Zbl
[8] The scalar curvature equation on 2 and 3 spheres, Calc. Var., Volume 1 (1993), pp. 205-229 | DOI | MR | Zbl
[9] A perturbation result in prescribing scalar curvature on , Duke Math. J., Volume 64 (1991), pp. 27-69 Addendum 71 (1993), p. 333–335 | DOI | MR | Zbl
[10] Prescribing scalar curvature on , Part I: Apriori estimates, J. differential geometry, Volume 57 (2001), pp. 67-171 | MR | Zbl
[11] Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies, Volume 3 (2003), pp. 457-470 | MR | Zbl
[12] Isolated invariant sets and the Morse index, CBMS Reg. conf-Series in Math, 38, AMS, 1978 | MR | Zbl
[13] Conformal metrics with prescribed scalar curvature, Inventiones Math., Volume 86 (1986), pp. 243-254 | DOI | MR | Zbl
[14] Cuplength Estimates on Lagrangian intersections, Comm. Pure and Applied Math, Volume XLII (1989) no. 4, pp. 335-356 | DOI | MR | Zbl
[15] Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvature, Annals of Math., Volume 101 (1975), pp. 317-331 | DOI | MR | Zbl
[16] Prescribing scalar curvature on , and related problems, J. Functional Analysis, Volume 118 (1993), pp. 43-118 | DOI | MR | Zbl
[17] Prescribing scalar curvature on and related topics, Part I, Journal of Differential Equations, Volume 120 (1995), pp. 319-410 | DOI | MR | Zbl
[18] Prescribing scalar curvature on and related topics, Part II: existence and compactness, Comm. Pure Appl. Math., Volume 49 (1996), pp. 541-579 | DOI | MR | Zbl
[19] On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, Volume 4 (1998), pp. 107-130 | Numdam | MR | Zbl
[20] The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, Volume 1 (1985), p. I: 165-201, II: 45–121 | MR | Zbl
[21] Lectures on the h-cobordism theorem, Princeton University Press, 1965 | MR | Zbl
[22] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495 | MR | Zbl
[23] Prescribed scalar curvature on the n-sphere, Calculus of Variations and Partial Differential Equations, Volume 4 (1996), pp. 1-25 | DOI | MR | Zbl
[24] A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | MR | Zbl
Cited by Sources: