Nous étudions la nilpotence de certains groupes d’auto-équivalences d’homotopie. Notre objectif principal est d’étendre, aux groupes d’homotopy localisés et/ou aux groupes homotopie avec des coefficients, le principe général de Dror et A. Zabrodsky par lequel un groupe d’auto-équivalences d’homotopie d’un complexe fini, qui agit de façon nilpotente sur les groupes homotopie, est lui-même nilpotent
In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
Keywords: Self homotopy equivalence
Mot clés : auto équivalence d’homotopie
Cuvilliez, Maxence 1 ; Murillo, Aniceto 2 ; Viruel, Antonio 3
@article{AIF_2011__61_1_351_0, author = {Cuvilliez, Maxence and Murillo, Aniceto and Viruel, Antonio}, title = {Nilpotency of self homotopy equivalences with coefficients}, journal = {Annales de l'Institut Fourier}, pages = {351--364}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {1}, year = {2011}, doi = {10.5802/aif.2604}, mrnumber = {2828133}, zbl = {1221.55008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2604/} }
TY - JOUR AU - Cuvilliez, Maxence AU - Murillo, Aniceto AU - Viruel, Antonio TI - Nilpotency of self homotopy equivalences with coefficients JO - Annales de l'Institut Fourier PY - 2011 SP - 351 EP - 364 VL - 61 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2604/ DO - 10.5802/aif.2604 LA - en ID - AIF_2011__61_1_351_0 ER -
%0 Journal Article %A Cuvilliez, Maxence %A Murillo, Aniceto %A Viruel, Antonio %T Nilpotency of self homotopy equivalences with coefficients %J Annales de l'Institut Fourier %D 2011 %P 351-364 %V 61 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2604/ %R 10.5802/aif.2604 %G en %F AIF_2011__61_1_351_0
Cuvilliez, Maxence; Murillo, Aniceto; Viruel, Antonio. Nilpotency of self homotopy equivalences with coefficients. Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 351-364. doi : 10.5802/aif.2604. https://aif.centre-mersenne.org/articles/10.5802/aif.2604/
[1] Problems on Self-homotopy equivalences, Contemp. Math., Volume 274 (2001), pp. 309-315 | MR | Zbl
[2] Subgroups of the group of self-homotopy equivalences, Contemp. Math., Volume 274 (2001), pp. 21-32 | MR | Zbl
[3] Obstruction Theory, Lectures Notes in Math., 628, Springer, 1977 | MR
[4] Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv., Volume 56 (1981), pp. 599-614 | DOI | MR | Zbl
[5] Unipotency and nilpotency in homotopy equivalences, Topology, Volume 18 (1979), pp. 187-197 | DOI | MR | Zbl
[6] Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math., Volume 274 (2001), pp. 145-157 | MR | Zbl
[7] Operations with local coefficients, Amer. Journal of Math., Volume 82 (1963) no. 2, pp. 156-188 | DOI | MR | Zbl
[8] Finite groups, Harper and Row, 1968 | MR | Zbl
[9] Localization of Nilpotent Groups and Spaces, Mathematics Studies, 15, North-Holland, 1975 | MR | Zbl
[10] Combinatorial Group Theory, Pure and Applied mathematics, 13, Interscience Publishers, 1966 | Zbl
[11] Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math., Volume 136 (1989), pp. 293-301 | MR | Zbl
[12] Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math., Volume 72 (1990), pp. 313-319 | DOI | MR | Zbl
[13] Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math., Volume 130 (1987) no. 1, pp. 171-186 | MR | Zbl
[14] Self-homotopy equivalences of -local spaces, Koday Math. Jour., Volume 12 (1989), pp. 270-281 | DOI | MR | Zbl
[15] Homotopy self–equivalences 1988–1999, Contemporary Math., Volume 274 (2001), pp. 1-12 | MR | Zbl
[16] Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr., Volume 207 (1999), pp. 183-194 | MR | Zbl
[17] -invariants in local coefficients theory, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 169-174 | MR | Zbl
[18] Infinitesimal computations in topology, I.H.E.S. Publ. Math., Volume 47 (1977), pp. 269-331 | Numdam | MR | Zbl
[19] Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer, 1978 | MR | Zbl
[20] Applications of minimal simplicial groups, Topology, Volume 15 (1976), pp. 115-130 | DOI | MR | Zbl
Cité par Sources :