Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1857-1869.

We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure ω u n is moderate if u is Hölder continuous. We prove a theorem which is a partial converse to this result.

Nous étudions la continuité de Hölder des solutions des équations de Monge-Ampère sur des variétés Kählériennes compactes. T. C. Dinh, V.A. Nguyen et N. Sibony ont prouvé que ω u n est modéré si u est Hölder-continue. Nous démontrons dans quelques cas la réciproque de ce résultat.

DOI: 10.5802/aif.2574
Classification: 32W20, 32Q15
Keywords: Hölder continuity, complex Monge-Ampère operator, $\omega $-plurisubharmonic functions, compact Kähler manifolds
Mot clés : continuité de Hölder, opérateur complexe de Monge-Ampère, fonctions $\omega $-pluriharmoniques, variétés de Kähler compactes
Hiep, Pham Hoang 1

1 University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)
@article{AIF_2010__60_5_1857_0,
     author = {Hiep, Pham Hoang},
     title = {H\"older continuity of solutions to the {Monge-Amp\`ere} equations on compact {K\"ahler} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1857--1869},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {5},
     year = {2010},
     doi = {10.5802/aif.2574},
     mrnumber = {2766232},
     zbl = {1208.32033},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2574/}
}
TY  - JOUR
AU  - Hiep, Pham Hoang
TI  - Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 1857
EP  - 1869
VL  - 60
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2574/
DO  - 10.5802/aif.2574
LA  - en
ID  - AIF_2010__60_5_1857_0
ER  - 
%0 Journal Article
%A Hiep, Pham Hoang
%T Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
%J Annales de l'Institut Fourier
%D 2010
%P 1857-1869
%V 60
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2574/
%R 10.5802/aif.2574
%G en
%F AIF_2010__60_5_1857_0
Hiep, Pham Hoang. Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1857-1869. doi : 10.5802/aif.2574. https://aif.centre-mersenne.org/articles/10.5802/aif.2574/

[1] Armitage, David H.; Gardiner, Stephen J. Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2001 | MR | Zbl

[2] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl

[3] Bedford, Eric; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1-2, pp. 1-40 | DOI | MR | Zbl

[4] Cegrell, U.; Kołodziej, S. The equation of complex Monge-Ampère type and stability of solutions, Math. Ann., Volume 334 (2006) no. 4, pp. 713-729 | DOI | MR | Zbl

[5] Cegrell, Urban Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | DOI | MR | Zbl

[6] Cegrell, Urban The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179 | DOI | Numdam | MR | Zbl

[7] Coman, Dan; Guedj, Vincent; Zeriahi, Ahmed Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008) no. 2, pp. 393-418 | DOI | MR | Zbl

[8] Demailly, J. P. Complex analytic and differential geometry, self published e-book (1997)

[9] Demailly, Jean-Pierre Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987) no. 4, pp. 519-564 | DOI | MR | Zbl

[10] Demailly, Jean-Pierre Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (Univ. Ser. Math.), Plenum, New York, 1993, pp. 115-193 | MR | Zbl

[11] Dinew, S.; Hiep, P. H. Convergence in capacity on compact Kähler manifolds (2009) Preprint, (http://arxiv.org) | MR

[12] Dinew, S.; Zhang, Z. Stability of Bounded Solutions for Degenerate Complex Monge-Ampère equations (2008) Preprint, (http://arxiv.org)

[13] Dinew, Sławomir Cegrell classes on compact Kähler manifolds, Ann. Polon. Math., Volume 91 (2007) no. 2-3, pp. 179-195 | DOI | MR | Zbl

[14] Dinew, Sławomir An inequality for mixed Monge-Ampère measures, Math. Z., Volume 262 (2009) no. 1, pp. 1-15 | DOI | MR | Zbl

[15] Dinew, Sławomir Uniqueness in (X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122 | DOI | MR | Zbl

[16] Dinh, T. C.; Nguyen, V. A.; Sibony, N. Exponential estimates for plurisubharmonic functions and stochastic dynamics (2008) Preprint, (http://arxiv.org)

[17] Dinh, Tien-Cuong; Sibony, Nessim Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., Volume 81 (2006) no. 1, pp. 221-258 | DOI | MR | Zbl

[18] Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Singular Kähler-Einstein metrics, J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 607-639 | DOI | MR

[19] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | MR | Zbl

[20] Guedj, Vincent; Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | MR | Zbl

[21] Hiep, P. H. On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 2007-2018 | DOI | MR | Zbl

[22] Hörmander, Lars Notions of convexity, Progress in Mathematics, 127, Birkhäuser Boston Inc., Boston, MA, 1994 | MR | Zbl

[23] Kołodziej, Sławomir The complex Monge-Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | MR | Zbl

[24] Kołodziej, Sławomir The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 667-686 | DOI | Zbl

[25] Kołodziej, Sławomir The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005) no. 840, pp. x+64 | Zbl

[26] Kołodziej, Sławomir The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. (2), Volume 72 (2005) no. 1, pp. 225-238 | DOI | MR | Zbl

[27] Kołodziej, Sławomir Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L p : the case of compact Kähler manifolds, Math. Ann., Volume 342 (2008) no. 2, pp. 379-386 | DOI | MR | Zbl

[28] Kołodziej, Sławomir; Tian, Gang A uniform L estimate for complex Monge-Ampère equations, Math. Ann., Volume 342 (2008) no. 4, pp. 773-787 | DOI | MR | Zbl

[29] Siciak, Józef On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., Volume 105 (1962), pp. 322-357 | DOI | MR | Zbl

[30] Siciak, Józef Franciszek Leja (1885–1979), Wiadom. Mat., Volume 24 (1982) no. 1, pp. 65-90 | MR | Zbl

[31] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl

[32] Zeriahi, Ahmed The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz measures and capacities, Proc. London Math. Soc. (3), Volume 89 (2004) no. 1, pp. 104-122 | DOI | MR | Zbl

[33] Zeriahi, Ahmed A minimum principle for plurisubharmonic functions, Indiana Univ. Math. J., Volume 56 (2007) no. 6, pp. 2671-2696 | DOI | MR | Zbl

Cited by Sources: