Regular projectively Anosov flows on three-dimensional manifolds
Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1649-1684.

We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of T 2 ×I-models. We also apply our method to rigidity problems of some group actions.

Nous classifions complètement les flots projectivement Anosov réguliers en dimension trois. Plus précisément, nous prouvons qu’un tel flot est un flot d’Anosov ou se décompose en une union finie de T 2 ×I-modèles. Nous appliquons aussi notre méthode au problème de rigidité de certaines actions de groupes.

DOI: 10.5802/aif.2569
Classification: 37D30, 57R30
Keywords: Projectively Anosov flows, bi-contact structures
Mot clés : flots projectivement Anosov, structures de bi-contact

Asaoka, Masayuki 1

1 Kyoto University Department of Mathematics Kitashirakawa Oiwakecho, Sakyo-ku 606-8502 Kyoto (Japan)
@article{AIF_2010__60_5_1649_0,
     author = {Asaoka, Masayuki},
     title = {Regular projectively {Anosov} flows on three-dimensional manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1649--1684},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {5},
     year = {2010},
     doi = {10.5802/aif.2569},
     mrnumber = {2766227},
     zbl = {1202.37030},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2569/}
}
TY  - JOUR
AU  - Asaoka, Masayuki
TI  - Regular projectively Anosov flows on three-dimensional manifolds
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 1649
EP  - 1684
VL  - 60
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2569/
DO  - 10.5802/aif.2569
LA  - en
ID  - AIF_2010__60_5_1649_0
ER  - 
%0 Journal Article
%A Asaoka, Masayuki
%T Regular projectively Anosov flows on three-dimensional manifolds
%J Annales de l'Institut Fourier
%D 2010
%P 1649-1684
%V 60
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2569/
%R 10.5802/aif.2569
%G en
%F AIF_2010__60_5_1649_0
Asaoka, Masayuki. Regular projectively Anosov flows on three-dimensional manifolds. Annales de l'Institut Fourier, Volume 60 (2010) no. 5, pp. 1649-1684. doi : 10.5802/aif.2569. https://aif.centre-mersenne.org/articles/10.5802/aif.2569/

[1] Arroyo, A.; Rodriguez Hertz, F. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 | DOI | Numdam | MR | Zbl

[2] Asaoka, M. Non-homogeneous locally free actions of the affine group (preprint. arXiv:math.0702833)

[3] Asaoka, M. A classification of three dimensional regular projectively Anosov flows, Proc. Japan Acad., Ser. A, Volume 80 (2004) no. 10, pp. 194-197 | DOI | MR | Zbl

[4] Asaoka, M. Classification of regular and non-degenerate projectively Anosov diffeomorphisms on three dimensional manifolds, J. Math. Kyoto Univ., Volume 46 (2006) no. 2, pp. 349-356 | MR | Zbl

[5] Asaoka, M. Codimension-one foliations with a transversely contracting flow, Foliations 2005, World Sci. Publ., Hackensack, NJ, 2006, pp. 21-36 | MR

[6] Barbot, T. Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 2, pp. 247-270 | DOI | MR | Zbl

[7] Bonatti, C.; Díaz, L. J.; Viana, M. Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, 102, Springer-Verlag, Berlin, 2005 (A global geometric and probabilistic perspective, Mathematical Physics, III) | MR | Zbl

[8] Cantwell, J.; Conlon, L. Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc., Volume 33 (1981) no. 2, pp. 408-410 | MR | Zbl

[9] Cantwell, J.; Conlon, L. The theory of levels, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986) (Contemp. Math.), Volume 70, Amer. Math. Soc., Providence, RI, 1988, pp. 1-10 | MR | Zbl

[10] Cantwell, J.; Conlon, L. Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 225-261 | MR | Zbl

[11] de Melo, W.; van Strien, S. One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25, Springer-Verlag, Berlin, 1993 | MR | Zbl

[12] Doering, C. I. Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985) (Pitman Res. Notes Math. Ser.), Volume 160, Longman Sci. Tech., Harlow, 1987, pp. 59-89 | MR | Zbl

[13] Eliashberg, Y. M.; Thurston, W. P. Confoliations, University Lecture Series, 13, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[14] Ghys, E. Actions localement libres du groupe affine, Invent. Math., Volume 82 (1985) no. 3, pp. 479-526 | DOI | MR | Zbl

[15] Ghys, E. Rigidité différentiable des groupes fuchiens, Inst. Hautes Études Sci. Publ. Math., Volume 78 (1993), pp. 163-185 | DOI | Numdam | MR | Zbl

[16] Ghys, E.; Sergiescu, V. Stabilité et conjugaison différentiable pour certains feuilletages, Topology, Volume 19 (1980) no. 2, pp. 179-197 | DOI | MR | Zbl

[17] Homburg, A. J. Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 3, pp. 749-773 | DOI | MR | Zbl

[18] Mañé, R. Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985) no. 4, pp. 495-524 Erratum. Comm. Math. Phys. 112 (1987), no. 4, 721–724 | DOI | MR | Zbl

[19] Mitsumatsu, Y. Anosov flows and non-stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | DOI | Numdam | MR | Zbl

[20] Mitsumatsu, Y. Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 75-125 | MR | Zbl

[21] Moussu, R.; Roussarie, R. Relations de conjugaison et de cobordisme entre certains feuilletages, Inst. Hautes Études Sci. Publ. Math., Volume 43 (1974), pp. 142-168 | DOI | Numdam | MR | Zbl

[22] Newhouse, S.; Palis, J. Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 293-301 | MR | Zbl

[23] Noda, T. Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 5, pp. 1617-1647 | DOI | Numdam | MR | Zbl

[24] Noda, T. Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier, Volume 54 (2004) no. 2, pp. 353-363 | DOI | Numdam | MR | Zbl

[25] Noda, T.; Tsuboi, T. Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 403-419 | MR | Zbl

[26] Ratner, M. E. Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693-704 (Translation to English) Math. Notes 6 1969, 880–886 | MR | Zbl

[27] Shub, M. Global stability of dynamical systems, Springer-Verlag, New York, 1987 (With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy) | MR | Zbl

[28] Tsuboi, T. Regular projectively Anosov flows on the Seifert fibered 3-manifolds, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 1233-1253 | DOI | MR | Zbl

Cited by Sources: