Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
[Des groupes de difféomorphismes analytiques réels du cercle qui ont une image finie sous l’application du nombre de rotation]
Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 1819-1845.

Nous considérons des groupes de difféomorphismes directs et analytiques réels du cercle qui ont une image finie sous l’application du nombre de rotation. Nous montrons que si un tel groupe est non-discret pour la topologie C 1 alors il a une orbite finie. Comme corollaire, nous montrons que si un tel groupe n’a aucune orbite finie alors chacun de ses sous-groupes contient soit un sous-groupe cyclique d’indice fini, soit un sous-groupe libre non-abélien.

We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the C 1 -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.

DOI : 10.5802/aif.2477
Classification : 37E45, 37E10, 57S05, 37B05, 20F67
Keywords: Rotation number, circle diffeomorphisms, groups, local vector fields.
Mot clés : nombre de rotation, difféomorphisms du cercle, groupes, champs du vecteur locaux

Matsuda, Yoshifumi 1

1 University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)
@article{AIF_2009__59_5_1819_0,
     author = {Matsuda, Yoshifumi},
     title = {Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function},
     journal = {Annales de l'Institut Fourier},
     pages = {1819--1845},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {5},
     year = {2009},
     doi = {10.5802/aif.2477},
     mrnumber = {2573191},
     zbl = {1181.37063},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2477/}
}
TY  - JOUR
AU  - Matsuda, Yoshifumi
TI  - Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1819
EP  - 1845
VL  - 59
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2477/
DO  - 10.5802/aif.2477
LA  - en
ID  - AIF_2009__59_5_1819_0
ER  - 
%0 Journal Article
%A Matsuda, Yoshifumi
%T Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
%J Annales de l'Institut Fourier
%D 2009
%P 1819-1845
%V 59
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2477/
%R 10.5802/aif.2477
%G en
%F AIF_2009__59_5_1819_0
Matsuda, Yoshifumi. Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function. Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 1819-1845. doi : 10.5802/aif.2477. https://aif.centre-mersenne.org/articles/10.5802/aif.2477/

[1] Carleson, L.; Gamelin, T. Complex dynamics, Universitext: Tracts in Mathematics, Springer Verlag, New York, 1993 | MR | Zbl

[2] Eliashberg, Y.; Thurston, W. Confoliations, University Lecture Series, 13, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[3] Ghys, E. Groups acting on the circle, L’Enseignement Mathématique, Volume 47 (2001), pp. 329-407 | MR | Zbl

[4] Ghys, E.; de la Harpe, P. Sur les groups hyperboliques d’après Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser, Boston, 1990 | MR | Zbl

[5] Hector, G.; Hirsch, U. Introduction to the Geometry of Foliations, Part A, Aspects of Mathematics, Friedr. Vieweg and Sohn, Braunschweig, 1981 | MR | Zbl

[6] Jørgensen, Troels A note on subgroups of SL(2,C), Quart. J. Math. Oxford Ser. (2), Volume 28 (1977) no. 110, pp. 209-211 | DOI | MR | Zbl

[7] Margulis, G. Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math., Volume 9 (2000), pp. 669-674 | DOI | MR | Zbl

[8] Nakai, Isao Separatrices for nonsolvable dynamics on (C,0), Ann. Inst. Fourier (Grenoble), Volume 44 (1994) no. 2, pp. 569-599 | DOI | Numdam | MR | Zbl

[9] Navas, A. On uniformly quasisymmetric groups of circle diffeomorphisms, Ann. Acad. Sci. Fenn. Math., Volume 31 (2006), pp. 437-462 | MR | Zbl

[10] Rebelo, Julio C. Ergodicity and rigidity for certain subgroups of Diff ω (S 1 ), Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 4, pp. 433-453 | Numdam | MR | Zbl

[11] Selberg, A. On discontinuous groups in higher-dimmensional symmetric spaces, Contributions to function theories (1960), pp. 147-164 | MR | Zbl

[12] Sergeraert, F. Feuilltages et difféomorphismes infiniment tangents à l’identité, Invent. Math., Volume 39 (1977), pp. 253-275 | DOI | MR | Zbl

[13] Szekeres, G. Regular iteration of real and complex functions, Acta Math., Volume 100 (1958), pp. 203-258 | DOI | MR | Zbl

Cité par Sources :