[Sur l’analyticité microlocale des solutions d’équations aux dérivées partielles non linéaires du premier ordre]
Nous étudions l’analyticité microlocale des solutions de l’équation non linéaire
où est une fonction analytique réelle, à valeurs complexes, et holomorphe en . Nous montrons que si est une solution de classe , et , ou si est une solution de classe , , et , alors . Ici, désigne le front d’onde analytique de et l’ensemble caractéristique de l’opérateur linéarisé. Quand , nous démontrons un résultat plus général faisant intervenir les crochets des opérateurs et de tout ordre.
We study the microlocal analyticity of solutions of the nonlinear equation
where is complex-valued, real analytic in all its arguments and holomorphic in . We show that if the function is a solution, and or if is a solution, , , and , then . Here denotes the analytic wave-front set of and Char is the characteristic set of the linearized operator. When , we prove a more general result involving the repeated brackets of and of any order.
Keywords: Analytic wave-front set, linearized operator
Mot clés : front d’onde analytique, opérateur linéarisé
Berhanu, Shif 1
@article{AIF_2009__59_4_1267_0, author = {Berhanu, Shif}, title = {On microlocal analyticity of solutions of first-order nonlinear {PDE}}, journal = {Annales de l'Institut Fourier}, pages = {1267--1290}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {4}, year = {2009}, doi = {10.5802/aif.2463}, mrnumber = {2566960}, zbl = {1195.35011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2463/} }
TY - JOUR AU - Berhanu, Shif TI - On microlocal analyticity of solutions of first-order nonlinear PDE JO - Annales de l'Institut Fourier PY - 2009 SP - 1267 EP - 1290 VL - 59 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2463/ DO - 10.5802/aif.2463 LA - en ID - AIF_2009__59_4_1267_0 ER -
%0 Journal Article %A Berhanu, Shif %T On microlocal analyticity of solutions of first-order nonlinear PDE %J Annales de l'Institut Fourier %D 2009 %P 1267-1290 %V 59 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2463/ %R 10.5802/aif.2463 %G en %F AIF_2009__59_4_1267_0
Berhanu, Shif. On microlocal analyticity of solutions of first-order nonlinear PDE. Annales de l'Institut Fourier, Tome 59 (2009) no. 4, pp. 1267-1290. doi : 10.5802/aif.2463. https://aif.centre-mersenne.org/articles/10.5802/aif.2463/
[1] On the wave-front set of solutions of first order nonlinear pde’s, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 3009-3019 | MR | Zbl
[2] Microlocal hypo-analyticity and extension of CR functions, J. Differential Geometry, Volume 18 (1983), pp. 331-391 | MR | Zbl
[3] Finite time singularities in a 1D model of the quasi-geostrophic equation, Advances in Mathematics, Volume 194 (2005), pp. 203-223 | DOI | MR | Zbl
[4] Hypo-analyticity with vanishing Levi form, Bull. Inst. Math. Acad. Sinica, Volume 13 (1985), pp. 123-136 | MR | Zbl
[5] Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires, Duke Math. J., Volume 56 (1988), pp. 431-469 | DOI | MR | Zbl
[6] Edge of the wedge theory in hypo-analytic manifolds, Commun. Partial Differ. Equations, Volume 28 (2003), pp. 2003-2028 | DOI | MR | Zbl
[7] On the analyticity of solutions of first order nonlinear PDE, Trans. Amer. Math. Soc., Volume 331 (1992), pp. 627-638 | DOI | MR | Zbl
[8] On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Commun. Partial Differ. Equations, Volume 11 (1986), pp. 1539-1574 | DOI | MR | Zbl
[9] Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J., Volume 59 (1989), pp. 265-287 | DOI | MR | Zbl
[10] Dimers, the complex Burger’s equation and curves inscribed in polygons (www.math.ubc.ca/ kenyon/talks/browncolloquium.pdf)
[11] Limit shapes and the complex Burger’s equation (arXiv.org/abs/math-ph/0507007) | Zbl
Cité par Sources :