[La conjecture de Manin pour une surface quartique de del Pezzo avec singularité ]
Ce papier contient une preuve de la conjecture de Manin pour une surface quartique de del Pezzo, avec singularité .
The Manin conjecture is established for a split singular del Pezzo surface of degree four, with singularity type .
Keywords: Del Pezzo surfaces, rational points, Manin’s conjecture
Mot clés : surfaces de del Pezzo, points rationnels, conjecture de Manin
Browning, Tim D. 1 ; Derenthal, Ulrich 2
@article{AIF_2009__59_3_1231_0, author = {Browning, Tim D. and Derenthal, Ulrich}, title = {Manin{\textquoteright}s conjecture for a quartic del {Pezzo} surface with $\mathbf{A}_4$ singularity}, journal = {Annales de l'Institut Fourier}, pages = {1231--1265}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2462}, mrnumber = {2543667}, zbl = {1193.14028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2462/} }
TY - JOUR AU - Browning, Tim D. AU - Derenthal, Ulrich TI - Manin’s conjecture for a quartic del Pezzo surface with $\mathbf{A}_4$ singularity JO - Annales de l'Institut Fourier PY - 2009 SP - 1231 EP - 1265 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2462/ DO - 10.5802/aif.2462 LA - en ID - AIF_2009__59_3_1231_0 ER -
%0 Journal Article %A Browning, Tim D. %A Derenthal, Ulrich %T Manin’s conjecture for a quartic del Pezzo surface with $\mathbf{A}_4$ singularity %J Annales de l'Institut Fourier %D 2009 %P 1231-1265 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2462/ %R 10.5802/aif.2462 %G en %F AIF_2009__59_3_1231_0
Browning, Tim D.; Derenthal, Ulrich. Manin’s conjecture for a quartic del Pezzo surface with $\mathbf{A}_4$ singularity. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1231-1265. doi : 10.5802/aif.2462. https://aif.centre-mersenne.org/articles/10.5802/aif.2462/
[1] Manin’s conjecture for toric varieties, J. Alg. Geom., Volume 7 (1998), pp. 15-53 | MR | Zbl
[2] On Manin’s conjecture for singular del Pezzo surfaces of degree four, I, Michigan Math. J., Volume 55 (2007), pp. 51-80 | DOI | MR | Zbl
[3] An overview of Manin’s conjecture for del Pezzo surfaces, Analytic number theory — A tribute to Gauss and Dirichlet, Volume 7, Clay Math. Proceedings, 2007, pp. 39-56 | MR | Zbl
[4] Fonctions zêta des hauteurs des espaces fibrés, Rational points on algebraic varieties, Volume 199, Progress in Math., 2001, pp. 71-115 | MR | Zbl
[5] On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math., Volume 148 (2002), pp. 421-452 | DOI | MR | Zbl
[6] Arithmetic on singular del Pezzo surfaces, Proc. London Math. Soc., Volume 57 (1988), pp. 25-87 | DOI | MR | Zbl
[7] Singular del Pezzo surfaces whose universal torsors are hypersurfaces, 2006 (arXiv:math.AG/0604194)
[8] On a constant arising in Manin’s conjecture for del Pezzo surfaces, Math. Res. Letters, Volume 14 (2007), pp. 481-489 | MR | Zbl
[9] The nef cone volume of generalized del Pezzo surfaces, Algebra & Number Theory, Volume 2 (2008), pp. 157-182 | DOI | MR
[10] Universal torsors over del Pezzo surfaces and rational points, Equidistribution in Number Theory, An Introduction (NATO Sci. Ser. II Math. Phys. Chem.), Volume 237, Springer, 2006 | MR | Zbl
[11] Rational points of bounded height on Fano varieties, Invent. Math., Volume 95 (1989), pp. 421-435 | DOI | MR | Zbl
[12] Geometry of equivariant compactifications of ., Internat. Math. Res. Notices, Volume 22 (1999), pp. 1211-1230 | DOI | MR | Zbl
[13] Methods of algebraic geometry, 2, Cambridge University Press, 1952 | MR
[14] Hauteurs et nombres de Tamagawa sur les variétés de Fano, Duke Math. J., Volume 79 (1995), pp. 101-218 | DOI | MR | Zbl
[15] Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque, Volume 251 (1998), pp. 91-258 | MR | Zbl
Cité par Sources :