Decomposition numbers for perverse sheaves
Annales de l'Institut Fourier, Volume 59 (2009) no. 3, pp. 1177-1229.

The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.

This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.

Le but de cet article est de poser les fondations pour les nombres de décomposition des faisceaux pervers, de donner quelques méthodes pour les calculer dans des cas simples et de les déterminer explicitement dans deux situations : pour une singularité simple (kleinienne) de surface et pour l’adhérence de l’orbite nilpotente non-triviale minimale dans une algèbre de Lie simple.

Ce travail a des applications dans la théorie des représentations modulaires, pour les groupes de Weyl en utilisant le cône nilpotent de l’algèbre de Lie semi-simple correspondante, et pour les schémas en groupes réductifs en utilisant la grassmannienne affine du dual de Langlands.

Received:
Accepted:
DOI: 10.5802/aif.2461
Classification: 55N33,  20C20
Keywords: Perverse sheaves, intersection cohomology, integral cohomology, t-structures, torsion theories, decomposition matrices, simple singularities, minimal nilpotent orbits
Juteau, Daniel 1

1 Mathematical Sciences Research Institute 17 Gauss Way Berkeley, CA 94720 (USA)
@article{AIF_2009__59_3_1177_0,
     author = {Juteau, Daniel},
     title = {Decomposition numbers  for perverse sheaves},
     journal = {Annales de l'Institut Fourier},
     pages = {1177--1229},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {3},
     year = {2009},
     doi = {10.5802/aif.2461},
     zbl = {1187.14022},
     mrnumber = {2543666},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2461/}
}
TY  - JOUR
TI  - Decomposition numbers  for perverse sheaves
JO  - Annales de l'Institut Fourier
PY  - 2009
DA  - 2009///
SP  - 1177
EP  - 1229
VL  - 59
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2461/
UR  - https://zbmath.org/?q=an%3A1187.14022
UR  - https://www.ams.org/mathscinet-getitem?mr=2543666
UR  - https://doi.org/10.5802/aif.2461
DO  - 10.5802/aif.2461
LA  - en
ID  - AIF_2009__59_3_1177_0
ER  - 
%0 Journal Article
%T Decomposition numbers  for perverse sheaves
%J Annales de l'Institut Fourier
%D 2009
%P 1177-1229
%V 59
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2461
%R 10.5802/aif.2461
%G en
%F AIF_2009__59_3_1177_0
Juteau, Daniel. Decomposition numbers  for perverse sheaves. Annales de l'Institut Fourier, Volume 59 (2009) no. 3, pp. 1177-1229. doi : 10.5802/aif.2461. https://aif.centre-mersenne.org/articles/10.5802/aif.2461/

[1] Beĭlinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque) Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | MR: 751966

[2] Borho, Walter; MacPherson, Robert Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981) no. 15, pp. 707-710 | MR: 618892 | Zbl: 0467.20036

[3] Borho, Walter; MacPherson, Robert Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque) Volume 101, Soc. Math. France, Paris, 1983, pp. 23-74 | MR: 737927

[4] Bourbaki, Nicolas Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 | MR: 240238 | Zbl: 0186.33001

[5] Brieskorn, Egbert Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 279-284 | MR: 437798 | Zbl: 0223.22012

[6] Deligne, Pierre La conjecture de Weil II, Publ. Math. IHES, Volume 52 (1980), pp. 137-252 | Numdam | MR: 601520 | Zbl: 0456.14014

[7] Goresky, Mark; MacPherson, Robert Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | Article | MR: 572580 | Zbl: 0448.55004

[8] Goresky, Mark; MacPherson, Robert Intersection homology. II, Invent. Math., Volume 72 (1983) no. 1, pp. 77-129 | Article | MR: 696691 | Zbl: 0529.55007

[9] Happel, Dieter; Reiten, Idun; Smalø, Sverre O. Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., Volume 120 (1996) no. 575, viii+ 88 pages | MR: 1327209 | Zbl: 0849.16011

[10] Ito, Y.; Nakamura, I. Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996) (London Math. Soc. Lecture Note Ser.) Volume 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233 | MR: 1714824 | Zbl: 0954.14001

[11] Juteau, Daniel Modular Springer correspondence and decomposition matrices (in preparation)

[12] Juteau, Daniel Modular Springer correspondence and decomposition matrices (2007) (Ph. D. Thesis)

[13] Juteau, Daniel Cohomology of the minimal nilpotent orbit, Transformation Groups, Volume 13 (2008) no. 2, pp. 355-387 | Article | MR: 2426135 | Zbl: 1152.22007

[14] Kashiwara, Masaki; Schapira, Pierre Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 332, Springer-Verlag, Berlin, 2006 | MR: 2182076 | Zbl: 1118.18001

[15] Kazhdan, David; Lusztig, George Schubert varieties and Poincaré duality, Proc. Symposia in Pure Math., Volume 36 (1980), pp. 185-203 | MR: 573434 | Zbl: 0461.14015

[16] Letellier, Emmanuel Fourier transforms of invariant functions on finite reductive Lie algebras, Lecture Notes in Mathematics, Volume 1859, Springer, Berlin, 2005 | MR: 2114404 | Zbl: 1076.43001

[17] Lusztig, George Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984), pp. 205-272 | Article | MR: 732546 | Zbl: 0547.20032

[18] Malkin, Anton; Ostrik, Viktor; Vybornov, Maxim The minimal degeneration singularities in the affine Grassmannians, Duke Math. J., Volume 126 (2005) no. 2, pp. 233-249 | Article | MR: 2115258 | Zbl: 1078.14016

[19] Mirković, I.; Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | Article | MR: 2342692 | Zbl: 1138.22013

[20] Slodowy, Peter Four lectures on simple groups and singularities, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, Volume 11, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1980 | MR: 563725 | Zbl: 0425.22020

[21] Slodowy, Peter Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, Volume 815, Springer, Berlin, 1980 | MR: 584445 | Zbl: 0441.14002

[22] Springer, Tonny A. Linear algebraic groups, Progress in Mathematics, Volume 9, Birkhäuser Boston Inc., Boston, MA, 1998 | MR: 1642713 | Zbl: 0927.20024

[23] Wang, Weiqiang Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc., Volume 127 (1999) no. 3, p. 935-936 | Article | MR: 1610801 | Zbl: 0909.22009

[24] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Volume 38, Cambridge University Press, Cambridge, 1994 | MR: 1269324 | Zbl: 0797.18001

Cited by Sources: