[La conjecture de Lichnerowicz-Obata sur les transformations conformes des variétés Finslériennes]
Nous démontrons une variante de la conjecture de Lichnerowicz-Obata sur les transformations conformes des variétés finslériennes. Plus précisément, un champ de vecteurs conforme complet et essentiel sur une variété finslérienne non-riemannienne, est un champ homothétique sur un espace vectoriel normé.
We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.
Keywords: Finsler metric, conformal transformation
Mot clés : métrique finslérienne, transformation conforme
Matveev, V. S. 1 ; Rademacher, H.-B. 2 ; Troyanov, M. 3 ; Zeghib, A. 4
@article{AIF_2009__59_3_937_0, author = {Matveev, V. S. and Rademacher, H.-B. and Troyanov, M. and Zeghib, A.}, title = {Finsler {Conformal} {Lichnerowicz-Obata} conjecture}, journal = {Annales de l'Institut Fourier}, pages = {937--949}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2452}, mrnumber = {2543657}, zbl = {1179.53075}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2452/} }
TY - JOUR AU - Matveev, V. S. AU - Rademacher, H.-B. AU - Troyanov, M. AU - Zeghib, A. TI - Finsler Conformal Lichnerowicz-Obata conjecture JO - Annales de l'Institut Fourier PY - 2009 SP - 937 EP - 949 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2452/ DO - 10.5802/aif.2452 LA - en ID - AIF_2009__59_3_937_0 ER -
%0 Journal Article %A Matveev, V. S. %A Rademacher, H.-B. %A Troyanov, M. %A Zeghib, A. %T Finsler Conformal Lichnerowicz-Obata conjecture %J Annales de l'Institut Fourier %D 2009 %P 937-949 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2452/ %R 10.5802/aif.2452 %G en %F AIF_2009__59_3_937_0
Matveev, V. S.; Rademacher, H.-B.; Troyanov, M.; Zeghib, A. Finsler Conformal Lichnerowicz-Obata conjecture. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 937-949. doi : 10.5802/aif.2452. https://aif.centre-mersenne.org/articles/10.5802/aif.2452/
[1] Transformations infinitésimales conformes des variétés finslériennes compactes, Ann. Polon. Math., Volume 36 (1979), pp. 213-229 | MR | Zbl
[2] Groups of conformal transformations of Riemannian spaces, (russian) Mat. Sbornik, 89 (131), 1972 (engl.transl.) Math. USSR Sbornik, Volume 18 (1972), pp. 285-301 | MR | Zbl
[3] Some problems on Finsler geometry, Handbook of differential geometry, II, p. 1–33, Elsevier/North-Holland, Amsterdam, 2006 | MR | Zbl
[4] An Introduction to Riemann-Finsler Geometry, Grad. Texts Mathem., 200, Springer Verlag, New York, 2000 | MR | Zbl
[5] Lectures on Hyperbolic Geometry, Springer, Berlin, 1972 | Zbl
[6] Projectively flat Finsler 2-spheres of constant curvature, Selecta Math., Volume 3 (1997), pp. 161-203 | DOI | MR | Zbl
[7] A course in metric geometry, Graduate Studies in Mathematics, 33, AMS, Providence, RI, 2001 | Zbl
[8] Le groupe des automorphismes conformes d’une variété de Finsler compacte, C. R. Acad.Sci, Paris, Sér. A-B 291, (1980) (A209-A210) | Zbl
[9] The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996), pp. 277-291 | DOI | MR | Zbl
[10] Autour du théorème de Ferrand-Obata, Ann. Gl. Anal. Geom., Volume 21 (2002), pp. 51-62 | DOI | MR | Zbl
[11] Liouville’s theorem in conformal geometry, J. Math. pures appl., Volume 88 (2007), pp. 251-260 | DOI | Zbl
[12] Conformal structures and Möbius structures, Conformal Geometry, p. 1–39, Aspects Math. E 12, Vieweg, Braunschweig, 1988 | MR | Zbl
[13] The theorem of Lelong-Ferrand andObata, Conformal Geometry, p. 93–103, Aspects Math. E 12, Vieweg, Braunschweig, 1988 | MR | Zbl
[14] Ueber Complexe, insbesondere Linien- und Kugel-Complexe mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann., Volume 5 (1872), pp. 145-246 | DOI | MR
[15] Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie, Bachelier, Note VI, G. Monge, Paris, 1850, pp. 609-617
[16] Lichnerowicz-Obata conjecture in dimension two, Comm. Math. Helv., Volume 81 (2005) no. 3, pp. 541-570 | DOI | MR | Zbl
[17] Proof of projective Lichnerowicz-Obata conjecture, J. Diff. Geom., Volume 75 (2007), pp. 459-502 (arXiv:math/0407337) | MR | Zbl
[18] The conjectures about conformal transformations, J. Diff. Geom., Volume 6 (1971), pp. 247-258 | MR | Zbl
[19] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | DOI | MR | Zbl
[20] Lectures on Finsler geometry, World Scientific, Singapore, 2001 | MR | Zbl
[21] Berwald metrics constructed by Chevalley’s polynomials (arXiv:math/0601522)
[22] Average Riemannian structures associated with a Finsler structure (arXiv:math/0501058v5)
[23] On a theorem of Alekseevskii concerning conformal transformations, J.Math.Soc.Japan, Volume 28 (1976), pp. 278-289 | DOI | MR | Zbl
[24] On the conformal group of Finsler manifolds, preprint, 2005 (http://www.umpa.ens-lyon.fr/~zeghib/finsconf.pdf)
Cité par Sources :