Let be a classical Lie algebra, i.e., either , , or and let be a nilpotent element of . We study various properties of the centralisers . The first four sections deal with rather elementary questions, like the centre of , commuting varieties associated with , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on and symmetric invariants of .
Soit une algèbre de Lie classique, i.e., , , ou , et soit un élément nilpotent de . Nous étudions dans cet article diverses propriétés du centralisateur de . Les quatre premières sections concernent des problèmes assez élémentaires portant sur le centre de , la variété commutante de , ou encore les centralisateurs des paires commutantes. La seconde partie aborde des questions liées aux différentes structures de Poisson sur et aux invariants symétriques de .
Accepted:
DOI: 10.5802/aif.2451
Classification: 17B45
Keywords: Nilpotent orbits, centralisers, symmetric invariants
Author's affiliations:
@article{AIF_2009__59_3_903_0, author = {Yakimova, Oksana}, title = {Surprising properties of centralisers in classical {Lie} algebras}, journal = {Annales de l'Institut Fourier}, pages = {903--935}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2451}, zbl = {1187.17008}, mrnumber = {2543656}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2451/} }
TY - JOUR TI - Surprising properties of centralisers in classical Lie algebras JO - Annales de l'Institut Fourier PY - 2009 DA - 2009/// SP - 903 EP - 935 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2451/ UR - https://zbmath.org/?q=an%3A1187.17008 UR - https://www.ams.org/mathscinet-getitem?mr=2543656 UR - https://doi.org/10.5802/aif.2451 DO - 10.5802/aif.2451 LA - en ID - AIF_2009__59_3_903_0 ER -
Yakimova, Oksana. Surprising properties of centralisers in classical Lie algebras. Annales de l'Institut Fourier, Volume 59 (2009) no. 3, pp. 903-935. doi : 10.5802/aif.2451. https://aif.centre-mersenne.org/articles/10.5802/aif.2451/
[1] On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 | MR: 1478627 | Zbl: 0895.14015
[2] Elementary invariants for centralisers of nilpotent matrices (arXiv:math.RA/0611024)
[3] Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993 | MR: 1251060 | Zbl: 0972.17008
[4] Poisson structures transverse to coadjoint orbits, Bull. Sci. Math., Volume 126 (2002) no. 7, pp. 525-534 | Article | MR: 1931184 | Zbl: 1074.53070
[5] Quantization of Slodowy slices, Int. Math. Res. Not. (2002) no. 5, pp. 243-255 | Article | MR: 1876934 | Zbl: 0989.17014
[6] Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math., Volume 140 (2000) no. 3, pp. 511-561 | Article | MR: 1760750 | Zbl: 0984.17007
[7] Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., Volume 11 (2008), pp. 280-297 | Article | MR: 2434879
[8] Nilpotent orbits in representation theory, Lie theory (Progr. Math.) Volume 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1-211 | MR: 2042689 | Zbl: pre02160654
[9] Some remarks on nilpotent orbits, J. Algebra, Volume 64 (1980) no. 1, pp. 190-213 | Article | MR: 575790 | Zbl: 0431.17007
[10] Lie group representations on polynomial rings, Amer. J. Math., Volume 85 (1963), pp. 327-404 | Article | MR: 158024 | Zbl: 0124.26802
[11] Centralizers of irregular elements in reductive algebraic groups, Pacific J. Math., Volume 104 (1983) no. 1, pp. 133-154 | MR: 683733 | Zbl: 0477.20025
[12] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | Article | MR: 1856396 | Zbl: 1091.14004
[13] Commuting pairs in the centralizers of -regular matrices, J. Algebra, Volume 214 (1999) no. 1, pp. 174-181 | Article | MR: 1684884 | Zbl: 0924.15015
[14] A degree inequality for Lie algebras with a regular Poisson semi-center (arXiv:0805.1342v1 [math.RT])
[15] On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, Volume 313 (2007) no. 1, pp. 343-391 | Article | MR: 2326150 | Zbl: pre05166838
[16] On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math., Volume 213 (2007) no. 1, pp. 380-404 | Article | MR: 2331248 | Zbl: pre05166638
[17] The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett., Volume 15 (2008) no. 2, pp. 239-249 | MR: 2385637 | Zbl: pre05310628
[18] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Volume 38 (1979) no. 3, pp. 311-327 | Numdam | MR: 535074 | Zbl: 0409.17006
[19] A counterexample to a problem on commuting matrices, Proc. Japan Acad. Ser. A Math. Sci., Volume 59 (1983) no. 9, p. 425-426 | Article | MR: 732601 | Zbl: 0566.17002
[20] Basic algebraic geometry. 1, Springer-Verlag, Berlin, 1994 (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid) | MR: 1328833 | Zbl: 0797.14001
[21] Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin, 1974 (Notes by Vinay V. Deodhar) | MR: 352279 | Zbl: 0281.20037
[22] Complete families of commuting functions for coisotropic Hamiltonian actions (arXiv:math.SG/0511498)
[23] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557 | MR: 723816 | Zbl: 0524.58011
[24] The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen., Volume 40 (2006) no. 1, p. 52-64, 96 | Article | MR: 2223249 | Zbl: 1152.17001
Cited by Sources: