[Une structure o-minimale sans décomposition cellulaire lisse]
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire . Pour ce faire, nous construisons une fonction dont le germe en admet un représentant pour tout entier , mais n’admet aucun représentant . Une condition de transcendance sur les coefficients de la série de Taylor de assure alors la quasi-analyticité de certaines algèbres différentielles engendrées par . La o-minimalité de la structure engendrée par est enfin déduite de cette quasi-analyticité.
Keywords: o-minimal, smooth cell decomposition
Mots-clés : o-minimal, decomposition cellulaire lisse
Le Gal, Olivier 1 ; Rolin, Jean-Philippe 2
@article{AIF_2009__59_2_543_0,
author = {Le Gal, Olivier and Rolin, Jean-Philippe},
title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition},
journal = {Annales de l'Institut Fourier},
pages = {543--562},
year = {2009},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {59},
number = {2},
doi = {10.5802/aif.2439},
mrnumber = {2521427},
zbl = {1193.03065},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2439/}
}
TY - JOUR
AU - Le Gal, Olivier
AU - Rolin, Jean-Philippe
TI - An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition
JO - Annales de l'Institut Fourier
PY - 2009
SP - 543
EP - 562
VL - 59
IS - 2
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2439/
DO - 10.5802/aif.2439
LA - en
ID - AIF_2009__59_2_543_0
ER -
%0 Journal Article
%A Le Gal, Olivier
%A Rolin, Jean-Philippe
%T An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition
%J Annales de l'Institut Fourier
%D 2009
%P 543-562
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2439/
%R 10.5802/aif.2439
%G en
%F AIF_2009__59_2_543_0
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562. doi: 10.5802/aif.2439
[1] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | DOI | Zbl | MR | Numdam
[2] -adic and real subanalytic sets, Ann. of Math. (2), Volume 128 (1988) no. 1, pp. 79-138 | DOI | Zbl | MR
[3] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | Zbl | MR
[4] The real field with convergent generalized power series, Trans. Amer. Math. Soc., Volume 350 (1998) no. 11, pp. 4377-4421 | DOI | Zbl | MR
[5] The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Volume 81 (2000) no. 3, pp. 513-565 | DOI | Zbl | MR
[6] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996) no. 1, pp. 1-12 | DOI | Zbl | MR
[7] Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau, 2003, pp. 1-21 With an Appendix: “Stanisław Łojasiewicz (1926–2002)” | MR
[8] Sur les fonctions indéfiniment dérivables, Acta Math., Volume 72 (1940), pp. 15-29 | DOI | MR
[9] Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 751-777 (electronic) | DOI | Zbl | MR
[10] A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Volume 5 (1999) no. 4, pp. 397-421 | DOI | Zbl | MR
Cité par Sources :



