Pour un compact dans , regulier, pôlynomiallement convexe et cerclé, on construit une suite de paires avec pôlynomes homogènes en deux variables et tel que les ensembles font une approximation de et quand est la fermeture d’un domaine strictement pseudoconvexe les mesures de comptage normalisées associées à l’ensemble fini tendent vers la mesure de Monge-Ampère pour . L’élément principal est un théorème d’approximation pour les fonctions sousharmoniques de croissance logarithmique à une variable.
For a regular, compact, polynomially convex circled set in , we construct a sequence of pairs of homogeneous polynomials in two variables with such that the sets approximate and if is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set converge to the pluripotential-theoretic Monge-Ampère measure for . The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.
Keywords: Logarithmic potential, Monge-Ampère measure, subharmonic functions, atomization
Mot clés : potentiel logarithmique, mesure de Monge-Ampère, fonctions sousharmoniques, atomisation
Bloom, Thomas 1 ; Levenberg, Norman 2 ; Lyubarskii, Yu. 3
@article{AIF_2008__58_6_2191_0, author = {Bloom, Thomas and Levenberg, Norman and Lyubarskii, Yu.}, title = {A {Hilbert} {Lemniscate} {Theorem} in $\mathbb{C}^2$}, journal = {Annales de l'Institut Fourier}, pages = {2191--2220}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2411}, mrnumber = {2473634}, zbl = {1152.32015}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2411/} }
TY - JOUR AU - Bloom, Thomas AU - Levenberg, Norman AU - Lyubarskii, Yu. TI - A Hilbert Lemniscate Theorem in $\mathbb{C}^2$ JO - Annales de l'Institut Fourier PY - 2008 SP - 2191 EP - 2220 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2411/ DO - 10.5802/aif.2411 LA - en ID - AIF_2008__58_6_2191_0 ER -
%0 Journal Article %A Bloom, Thomas %A Levenberg, Norman %A Lyubarskii, Yu. %T A Hilbert Lemniscate Theorem in $\mathbb{C}^2$ %J Annales de l'Institut Fourier %D 2008 %P 2191-2220 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2411/ %R 10.5802/aif.2411 %G en %F AIF_2008__58_6_2191_0
Bloom, Thomas; Levenberg, Norman; Lyubarskii, Yu. A Hilbert Lemniscate Theorem in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2191-2220. doi : 10.5802/aif.2411. https://aif.centre-mersenne.org/articles/10.5802/aif.2411/
[1] A Dirichlet problem for the complex Monge-Ampère operator in , Michigan Math. J., Volume 55 (2007) no. 1, pp. 123-138 | DOI | MR
[2] The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math., Volume 37 (1976), pp. 1-44 | DOI | MR | Zbl
[3] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl
[4] Mappings of partially analytic spaces, Amer. J. Math., Volume 83 (1961), pp. 209-242 | DOI | MR | Zbl
[5] On the definition of the Monge-Ampère operator in , Math. Ann., Volume 328 (2004) no. 3, pp. 415-423 | DOI | MR | Zbl
[6] Some applications of the Robin function to multivariable approximation theory, J. Approx. Th., Volume 92 (1998), pp. 1-21 | DOI | MR | Zbl
[7] Random polynomials and Green functions, International Math. Res. Notices, Volume 28 (2005), pp. 1689-1708 | DOI | MR | Zbl
[8] Weak-* convergence of Monge-Ampère measures, Math. Z., Volume 254 (2006) no. 3, pp. 505-508 | DOI | MR | Zbl
[9] Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), pp. 115-193 (Univ. Ser. Math., Plenum, New York) | MR | Zbl
[10] Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 37, Kluwer Acad. Publ., Dordrecht, 2001, pp. 163-189 (Montreal, QC, 2000) | MR | Zbl
[11] An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966 | MR | Zbl
[12] Notions of Convexity, Birkhäuser, 1994 | MR | Zbl
[13] Pluripotential Theory, Clarendon Press, Oxford, 1991 | MR | Zbl
[14] On approximation of subharmonic functions, Journal d’Analyse Math., Volume 83 (2001), pp. 121-149 | DOI | Zbl
[15] Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, 1974 | MR | Zbl
[16] Rational approximation and pluripolar sets, Math USSR Sbornik, Volume 47 (1984), pp. 91-113 | DOI | Zbl
[17] The convergence of Padé approximants to functions with branch points, J. Approx. Th., Volume 91 (1997), pp. 139-204 | DOI | MR | Zbl
[18] An estimate for an extremal plurisubharmonic function on , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328, 1983 | MR | Zbl
[19] Approximation of subharmonic functions, Anal. Math., Volume 11 (1985) no. 3, pp. 257-282 (Russian) | MR | Zbl
Cité par Sources :