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A HILBERT LEMNISCATE THEOREM IN C2

by Thomas BLOOM,
Norman LEVENBERG & Yu. LYUBARSKII (*)

Abstract. — For a regular, compact, polynomially convex circled set K in
C2, we construct a sequence of pairs {Pn, Qn} of homogeneous polynomials in two
variables with deg Pn = deg Qn = n such that the sets Kn := {(z, w) ∈ C2 :
|Pn(z, w)| 6 1, |Qn(z, w)| 6 1} approximate K and if K is the closure of a strictly
pseudoconvex domain the normalized counting measures associated to the finite set
{Pn = Qn = 1} converge to the pluripotential-theoretic Monge-Ampère measure
for K. The key ingredient is an approximation theorem for subharmonic functions
of logarithmic growth in one complex variable.

Résumé. — Pour un compact K dans C2, regulier, pôlynomiallement convexe
et cerclé, on construit une suite de paires {Pn, Qn} avec Pn, Qn pôlynomes ho-
mogènes en deux variables et deg Pn = deg Qn = n tel que les ensembles Kn :=
{(z, w) ∈ C2 : |Pn(z, w)| 6 1, |Qn(z, w)| 6 1} font une approximation de K et
quand K est la fermeture d’un domaine strictement pseudoconvexe les mesures
de comptage normalisées associées à l’ensemble fini {Pn = Qn = 1} tendent vers
la mesure de Monge-Ampère pour K. L’élément principal est un théorème d’ap-
proximation pour les fonctions sousharmoniques de croissance logarithmique à une
variable.

1. Introduction

Let K ⊂ C be a compact set with connected complement. The Hilbert
lemniscate theorem in one variable says that for such sets, given any ε > 0,
there exists a polynomial p with
(1.1)
K ⊂ Kp :=

{
z : |p(z)| 6 ||p||K := sup

z∈K
|p(z)|

}
⊂ Kε := {z : dist(z,K) 6 ε}.

Keywords: Logarithmic potential, Monge-Ampère measure, subharmonic functions,
atomization.
Math. classification: 32U05, 32W20.
(*) Supported in part by an NSERC grant (TB) and by the Norwegian Research Council
project 160192/V30 (YuL).
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The set Kp is called a lemniscate. In general, given ε > 0, one can take p to
be a Fekete polynomial of sufficiently large degree. A Fekete polynomial of
degree n for K is a monic polynomial Fn(z) =

∏n
j=1(z−anj) with anj ∈ K

chosen so that
n∏
j<k

|anj − ank| = max
z1,...,zn∈K

n∏
j<k

|zj − zk|.

The condition that K have connected complement is equivalent to the
polynomial convexity of K: this means that K = K̂ where

K̂ :=
{
z ∈ C : |p(z)| 6 ||p||K := sup

ζ∈K
|p(ζ)| for all polynomials p

}
.

(Here and in the entire paper “polynomial” means holomorphic polyno-
mial). We call K regular if the extremal function

(1.2) VK(z) := max
[
0, sup

{ 1
deg p

log |p(z)| : p polynomial, deg p > 1,

||p||K 6 1
}]

is continuous on C. For the lemniscate Kp in (1.1),

VK(z) = max
[ 1
deg p

log [|p(z)|/||p||K ], 0
]
.

If K is regular, in choosing, e.g., a sequence of Fekete polynomials {Fn},
the functions

(1.3)
1
n

log [|Fn(z)|/||Fn||K ] → VK(z)

locally uniformly outside of K. We also have the normalized counting mea-
sure of the zeros

(1.4) µn :=
1
n

n∑
j=1

δanj
→ 1

2π
∆VK

weak-* as measures. Here, ∆VK , the Laplacian of VK , is to be interpreted
as a positive distribution, i.e., a positive measure. Another example of a se-
quence of polynomials for which (1.3) and (1.4) hold is gotten by taking the
interval K = [−1, 1] and the classical Chebyshev polynomials {Tn}. Here
Tn(x) = cosn(arccosx) for x ∈ R; VK(z) = log |z +

√
z2 − 1| and the nor-

malized counting measure of the zeros approximate the arcsine distribution
dx√
1−x2 = ∆VK .
In several complex variables, given a compact setK ⊂ CN ,N > 1, we can

define the extremal function VK as in (1.2) where p(z) = p(z1, ..., zN ) is a
polynomial of the complex variables z1, ..., zN . The definitions of regularity

ANNALES DE L’INSTITUT FOURIER



HILBERT LEMNISCATE 2193

and polynomial convexity are defined as in the one-variable case; however
this latter definition is no longer equivalent to the complement of K being
connected. It follows from the definition of VK and K̂ that VK = VK̂ and
that K̂ = {z : VK(z) = 0} so that an assumption of polynomial convexity is
a natural one. In this paper, we will prove a version of Hilbert’s lemniscate
theorem for circled compact sets in C2, including a convergence of measures
result in the spirit of (1.4).

To motivate this result, we note that in several complex variables, sub-
level sets {z : |p(z)| 6 M} for a polynomial p are unbounded; in general,
one needs at least N polynomials p1, ..., pN to have hopes of a sublevel
set {z ∈ CN : |p1(z)| 6 M1, ..., |pN (z)| 6 MN} being compact. Moreover,
the topology of such sublevel sets can be complicated. A polynomial poly-
hedron is a set P which is the closure of the union of a finite number of
connected components of

P := {z ∈ CN : |p1(z)| < 1, ..., |pm(z)| < 1}

where p1, ..., pm are polynomials. It is an easy exercise to see that given any
polynomially convex compact set K ⊂ CN , and any open neighborhood Ω
of K, there exists a set of the form P with K ⊂ P ⊂ Ω (cf. [11]). What
is not at all obvious is a deep result of Bishop [4]: there exists a special
polynomial polyhedron P with the same property. We call a polynomial
polyhedron P ⊂ CN special if it can be defined by exactly N polynomials.
We emphasize that not all components of P need be included in P . It is
known (cf. [13], Theorem 5.3.1) that if the set

P := {z ∈ CN : |p1(z)| < 1, ..., |pN (z)| < 1},

consisting of the union of all components of a special polynomial polyhe-
dron defined by p1, ..., pN with deg p1 = ...deg pN =: n is compact, and if
(p1, ..., pN ) : CN → CN is proper, then we have

VP(z) = max
[ 1
n

log |p1(z)|, ...,
1
n

log |pN (z)|, 0
]
.

Thus, it will be helpful to know when a compact set K can be approximated
not just by a special polynomial polyhedron P , but by the full component
set P of such an object. It turns out that if we work in C2 with variables
(z, w) and we assume, in addition to K = K̂, that K ⊂ C2 is circled; i.e.,
z ∈ K if and only if eitz ∈ K, then such an approximation is possible.
Moreover, in this case, utilizing one-variable techniques, we can construct
Bishop-type approximants which satisfy an analogue of (1.3) and (1.4).

TOME 58 (2008), FASCICULE 6
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Theorem 1.1. — Let K ⊂ C2 be a regular, circled, polynomially con-
vex compact set. Then there exists a sequence of pairs of homogeneous
polynomials {Pn, Qn}, degPn = degQn = n with no common linear fac-
tors such that

ũn(z, w) := max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|, 0
]

uniformly approximates VK on C2;

Un(z, w) := max
[ 1
n

log |Pn(z, w)− 1|, 1
n

log |Qn(z, w)− 1|
]

locally uniformly approximates VK on C2 \ ∂K; and

(ddcũn)2 → (ddcVK)2

weak-* as measures in C2. Moreover, if K is the closure of a strictly pseu-
doconvex domain (e.g., a ball), then

(ddcUn)2 → (ddcVK)2.

Here, for certain plurisubharmonic (psh) functions u in C2, the complex
Monge-Ampère measure (ddcu)2 associated to u is well-defined. We discuss
this issue in section 4. In particular, for regular compact sets K ⊂ C2,
(ddcVK)2 plays a role analogous to ∆VK in one variable. In Theorem1.1,

• the function ũn is the extremal function for the set

(1.5) Kn := {(z, w) ∈ C2 : |Pn(z, w)| 6 1, |Qn(z, w)| 6 1};

• the Monge-Ampère measure (ddcUn)2 is supported on the finite
point set (see section 4)

(1.6) Kn := {(z, w) : Pn(z, w) = Qn(z, w) = 1};

• the measures {(ddcũn)2}n=1,..., {(ddcUn)2}n=1,... are supported in
a fixed compact set in C2.

The distinction between the sequences {ũn} and {Un} can easily be seen
even in one variable: take K = D := {t ∈ C : |t| 6 1}, the closed unit disk.
Then VD(t) = max[log |t|, 0] and, taking pn(t) = tn, we have

ṽn(t) := max
[ 1
n

log |pn(t)|, 0
]
≡ VD(t)

while
Vn(t) :=

1
n

log |pn(t)− 1| = 1
n

log |tn − 1|

converges locally uniformly to VD in C\{|t| = 1} but we clearly do not have
Vn → VD pointwise, or even “in capacity” (cf. [17]) on the circle {|t| = 1}.
However, we do have Vn → VD in L1

loc(C). Thus, we can utilize elementary

ANNALES DE L’INSTITUT FOURIER



HILBERT LEMNISCATE 2195

distribution theory to conclude that the normalized counting measure of
the zeros of these Fekete polynomials pn(t) converge weak-* to ∆VD. Of
course, in this example, the convergence of these measures is trivial (and,
as mentioned earlier, always holds for Fekete polynomials). We discuss the
analogous example of the unit bidisk in C2 in section 4.

We prove the first part of Theorem 1.1 by reducing it to a one-variable
approximation problem in section 2. Given a measure µ in C with µ(C) = 1
consider its logarithmic potential

(1.7) V (t) =
∫

C
log
∣∣∣1− t

ζ

∣∣∣dµ(ζ).

We assume that

(1.8) lim
|t|→∞

[V (t)− log |t|] exists,

(1.9)
∫

C
| log |t||dµ(t) <∞,

and that V (t) is continuous in C. Under these assumptions, we will prove
the following theorem, which is of interest in its own right, in section 3:

Theorem 1.2. — Given V satisfying (1.7), (1.8) and (1.9), for each
ε > 0 there exist a number N and polynomials P (t) and Q(t) of degree N
such that

(1.10) |V (t)− 1
N

max{log |P (t)|, log |Q(t)|}| < ε, t ∈ C.

The construction is based on techniques developed in [14]. There the au-
thors construct an L1−approximant to an arbitrary subharmonic function
u in C of the form log |f | with a (single) entire function f . The proof uti-
lizes a clever partition of C related to the measure µ and its support, due
to Yulmukhametov [19]. The precise version of the result that we use in
section 3 is labeled Lemma A. We remark that the genesis of Theorem 1.2
occurred during an Oberwolfach meeting attended by the second and third
authors in February 2004.

In the final section of the paper, we turn to the proof of Monge-Ampère
convergence, the second part of Theorem 1.1. For the sequence {ũn} this
convergence is automatic; but for the sequence {Un}, which is not locally
bounded, a non-trivial argument is required. This is given as Theorem 4.3.
We would like to thank Urban Cegrell for pointing out an error in our proof
of this result in a previous version.

TOME 58 (2008), FASCICULE 6
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We remark that from Bishop’s theorem one can construct sequences of
psh functions with the same properties as the sequence {Un} in Theo-
rem 1.1 for general regular, polynomially convex compact sets K ⊂ CN

which are not necessarily circled. However, this work of Bishop is techni-
cally complicated and the construction may not yield psh functions which
are the maximum of exactly N functions of the form c log |p| where p is a
polynomial. Our methods in constructing the polynomials in Theorem 1.1
are purely one-variable in nature and provide, via the sets {Kn} in (1.6),
discrete approximations to the Monge-Ampère measure (ddcVK)2.

We thank the referee for a careful reading of our paper.

2. Reduction to one-variable

For N = 1, 2, ..., let

L(CN ) := {u psh in CN : u(z) 6 log+ |z|+ C}

denote the class of psh functions of logarithmic growth on CN where the
constant C can depend on u. For example, given a polynomial p, u(z) :=

1
deg p log |p(z)| ∈ L(CN ). We also consider the class

L+(CN ) := {u∈L(CN ) : log+ |z|+C1 6 u(z) 6 log+ |z|+C2, some C1, C2}.

Note functions in this class are locally bounded.
For a bounded Borel set E in CN , one can define

(2.1) VE(z) := sup{u(z) : u ∈ L(CN ), u 6 0 on E}.

The uppersemicontinuous (usc) regularization V ∗
E(z) := lim supζ→z VE(ζ)

is called the global extremal function of E; either V ∗
E ≡ +∞ – this occurs

precisely when E is pluripolar; i.e., E ⊂ {u = −∞} for some u 6≡ −∞ psh
on a neighborhood of E – or else V ∗

E ∈ L+(CN ). It is well-known that if
E is a compact set in CN , then VE defined in (2.1) coincides with VE in
formula (1.1) (cf. [13] Theorem 5.1.7) and hence VE is lowersemicontinuous.
Thus for compact sets E, E is regular if and only if VE = V ∗

E .
As well as the classes L(CN ) and L+(CN ), we will consider the class

H(CN ) := {u ∈ L(CN ) : u(λz) = u(z) + log |λ| for λ ∈ C, z ∈ CN}

of logarithmically homogeneous psh functions.
Given u : CN → R in L(CN ) we define the Robin function of u to be

ρu(z) := lim sup
|λ|→∞

[u(λz)− log |λ|] .

ANNALES DE L’INSTITUT FOURIER
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Note that for λ ∈ C, ρu(λz) = log |λ| + ρu(z); i.e., ρu is logarithmically
homogeneous. It is known (cf. [6], Proposition 2.1) that for u ∈ L(CN ),
the Robin function ρu(z) is plurisubharmonic in CN ; indeed, either ρu ∈
H(CN ) or ρu ≡ −∞. As an example, if p is a polynomial of degree d so
that u(z) := 1

d log |p(z)| ∈ L(CN ), then ρu(z) = 1
d log |p̂(z)| where p̂ is the

top degree (d) homogeneous part of p. For a compact set K, we denote by
ρK the Robin function of V ∗

K ; i.e., ρK := ρV ∗
K

.
Suppose now that K is circled; i.e., z ∈ K if and only if eitz ∈ K. Then

the extremal function VK in (1.1) can be gotten via

VK(z) = max[0, sup{u(z) : u ∈ H(CN ), u 6 0 on K}]

= max[0, sup{ 1
deg p

log |p(z)| : p homogeneous polynomial, ||p||K 6 1}]

(cf. [13], Theorem 5.1.6). Moreover, we have the following.

Lemma 2.1. — Let K ⊂ CN be compact, circled, and nonpluripolar.
Then

(2.2) V ∗
K(z) = max[0, ρK(z)]

and

(2.3) supp(ddcV ∗
K)N ⊂ {ρK = 0}.

Proof. — Equation (2.2) follows from the above equation for VK , which
shows that V ∗

K(λz) = V ∗
K(z)+log |λ| provided z, λz 6∈ K̂, and the definition

of ρK : if V ∗
K(z) > 0, then

ρK(z) := lim sup
|λ|→∞

[V ∗
K(λz)− log |λ|]

= lim sup
|λ|→∞

[V ∗
K(z) + log |λ| − log |λ|] = V ∗

K(z).

We have ρK ∈ H(CN ) and ρK(z) = V ∗
K(z) if V ∗

K(z) > 0; since the set
{z ∈ CN : ρK(z) 6 0} differs from K̂ = {z ∈ CN : VK(z) = 0} by at
most a pluripolar set, (2.2) follows (cf. Corollary 5.2.5 [13]). The Robin
function ρK is locally bounded away from the origin which implies, by the
logarithmic homogeneity, that (ddcρK)N = 0 on CN \{0} (see section 4 for
a discussion of the complex Monge-Ampère operator). This gives (2.3). �

Let u ∈ L(C) and dµ(t) = i
4π∆u(t)dt∧ dt̄ be its Riesz measure. Jensen’s

formula yields that µ(C) :=
∫

C dµ(t) 6 1. If, in addition, u(0) = 0, we have

u(t) =
∫

C
log |1− t

ζ
|dµ(ζ)

TOME 58 (2008), FASCICULE 6
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([15], p. 37). In the notation introduced in this section, Theorem 1.2 yields
the following version of a one-variable approximation result:

Theorem 2.2. — Let u ∈ L+(C) ∩ C(C) with the additional property
that

lim
|t|→∞

[u(t)− log |t|]

exists. Given ε > 0, there exist polynomials pn, qn of degree n = n(ε) with

(2.4) u(t)− ε 6 max
[ 1
n

log |pn(t)|,
1
n

log |qn(t)|
]

6 u(t), t ∈ C.

Note that u ∈ L+(C) implies (1.9) and that (2.4) implies that pn and
qn have no common zeros; this latter fact will also follow from the proof of
the theorem. This immediately gives an approximation result for the class
H(C2) of logarithmically homogeneous psh functions in C2.

Corollary 2.3. — Let U ∈ H(C2) be logarithmically homogeneous
with the additional property that u(t) := U(1, t) satisfies the hypotheses of
the previous theorem. Given ε > 0, there exist homogeneous polynomials
Pn, Qn of degree n = n(ε) with no common factors such that

(2.5) U(z, w)− ε 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|
]

6 U(z, w),

(z, w) ∈ C2.

Proof. — If (2.4) holds, define

Pn(z, w) := znpn(w/z) and Qn(z, w) := znqn(w/z).

Note that if pn, qn are of degree exactly n; i.e., if

pn(t) = a0 + a1t+ · · ·+ ant
n and qn(t) = b0 + b1t+ · · ·+ bnt

n

with anbn 6= 0, then Pn(0, w) = anw
n and Qn(0, w) = bnw

n. Otherwise,
we may have Pn(0, w) ≡ 0 and/or Qn(0, w) ≡ 0. Then, since U(1, w/z) +
log |z| = U(z, w) for z 6= 0, (2.4) implies

U(z, w)− ε 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|
]

6 U(z, w)

for z 6= 0. But U is subharmonic on z = 0 so

U(0, w) = lim sup
z→0

U(z, w);

together with the previous inequalities, this yields (2.5) for all (z, w) ∈
C2. �

ANNALES DE L’INSTITUT FOURIER
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For a regular compact set K ⊂ CN , it is known that the Robin function
ρK is continuous on CN \ {0} (cf. [6]). Thus, if N = 2, ρK(1, t) ∈ L+(C) ∩
C(C) and

lim
|t|→∞

[ρK(1, t)− log |t|] = lim
|t|→∞

ρK(1/t, 1) = ρK(0, 1).

We can apply the corollary to ρK to find homogeneous polynomials Pn, Qn
with

(2.6) ρK(z, w)− ε 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|
]

6 ρK(z, w).

To prove the first part of Theorem 1.1, for a regular circled set K ⊂ C2,
using (2.2) from Lemma 2.1 and (2.6), we have
(2.7)

VK(z, w)− ε 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|, 0
]

6 VK(z, w).

This gives uniform convergence of

ũn(z, w) := max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|, 0
]
→ VK(z, w)

in Theorem 1.1.
For regular circled sets K ⊂ C2, (2.3) of Lemma 2.1 implies that

supp(ddcVK)2 ⊂ {(z, w) : ρK(z, w) = 0}.

We now show using (2.6) and (2.7) that
(2.8)

Un(z, w) := max
[ 1
n

log |Pn(z, w)− 1|, 1
n

log |Qn(z, w)− 1|
]
→ VK(z, w)

locally uniformly on C2 \ {ρK = 0}.
To prove (2.8), we observe from the inequality |A−B| 6 2 max[|A|, |B|]

we have

(2.9) Un(z, w) 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|, 0
]

+
log 2
n

.

Now on a compact set E ⊂ C2 \ {ρK 6 0}, by (2.7), given ε > 0 with
2ε < infE VK , for n > n0(ε),

max
[
|Pn(z, w)|, |Qn(z, w)|

]
> exp [n(VK(z, w)− ε)] on E.

By choosing n0(ε) larger, if necessary, we may assume

exp [n(VK(z, w)− ε)]− 1 > exp [n(VK(z, w)− 2ε)] on E

so that

max
[
|Pn(z, w)− 1|, |Qn(z, w)− 1|

]
> exp [n(VK(z, w)− 2ε)] on E.

TOME 58 (2008), FASCICULE 6
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Together with (2.7) and (2.9), this proves local uniform convergence outside
of {ρK 6 0}. On compact subsets of {ρK < 0}, the story is similar due to
the logarithmic homogeneity of ρK , 1

n log |Pn(z, w)|, and 1
n log |Qn(z, w)|

and (2.6): for r > 0, if E := {z ∈ K : ρK(z) < −r}, by (2.6),

max
[
|Pn(z, w)|, |Qn(z, w)|

]
< exp (−nr) on E.

Thus, |Pn(z, w)−1|, |Qn(z, w)−1| > 1−exp (−nr) on E. We conclude that

max
[ 1
n

log |Pn(z, w)− 1|, 1
n

log |Qn(z, w)− 1|
]
>

1
n

log
[
1− exp (−nr)

]
on E.

Hence Un → 0 uniformly on E.
Note that since we assume that K is polynomially convex and circled,

we have that

(2.10) ∂K = {(z, w) : ρK(z, w) = 0}.

Here is an illustrative example of the reduction scheme: let K = {(z, w) ∈
C2 : |z|2 + |w|2 6 1} be the closed unit ball in C2. Then VK(z, w) =
log+ (|z|2 + |w|2)1/2 and ρK(z, w) = log (|z|2 + |w|2)1/2 so that ρK(1, t) =
1
2 log (1 + |t|2). Note that the support of ∆ρK(1, t) is all of C, but that∫

C
| log |t||∆ρK(1, t) < +∞.

Thus, Theorem 2.2 provides a uniform approximation of the strictly sub-
harmonic function 1

2 log (1 + |t|2) by a function of the form

max
[ 1
n

log |pn(t)|,
1
n

log |qn(t)|
]
.

To summarize: using the results of this section, in order to complete the
proof of the first part of Theorem 1.1, it remains to prove the one-variable
approximation result, Theorem 1.2.

3. Main approximation result

In this section, we prove Theorem 1.2. We work exclusively in the com-
plex plane C with variable z. Recall that V (z) is the logarithmic potential
of a probability measure µ; V is continuous in C; lim|t|→∞[V (t) − log |t|]
exists; and

∫
C | log |t||dµ(t) <∞.

In order to prove the theorem we shall prove the following result:
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Claim 3.1. — For each ε > 0 there exists a number N , polynomials
P (z) and Q(z) of degree N , and sets E,F ⊂ C, E ∩ F = ∅ such that

|V (z)− 1
N

log |P (z)|| < ε, z ∈ C \ E,

(3.1) V (z) + ε >
1
N

log |P (z)|, z ∈ E,

and
|V (z)− 1

N
log |Q(z)|| < ε, z ∈ C \ F,

(3.2) V (z) + ε >
1
N

log |Q(z)|, z ∈ F.

3.1. Pattern of the proof

Step 1: It follows from (1.8) and also from continuity of V that V is
uniformly continuous in C. Convolving if need be with an appropriate bump
function one may assume that µ has the form

(3.3) dµ(z) = a(z)dσ(z),

where σ is Lebesgue measure and a > 0 is a smooth function in C. It follows
from (1.9) that

a(z) → 0 as |z| → ∞.

Define

(3.4) A := max
z∈C

a(z).

Step 2: We reduce the problem to the case when µ has compact support.
Given a number R > 0 we let QR denote the square

QR = {z = x+ iy; |x|, |y| < R}.

Given η > 0 we find an integer M and a number R so that

(3.5)
∫

C\QR

| log |ζ||dµ(ζ) < η,

(3.6) µ(C \QR) = 1/M < η,

and

(3.7) max
|z|>R/3

a(z) 6 η.
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Denote the logarithmic potential from the portion of µ outside QR by

V∞(z) :=
∫

C\QR

log |1− z

ζ
|dµ(ζ).

Finally, set

(3.8)
1
M

log r∞ :=
∫

C\QR

log |ζ|dµ(ζ).

Note that r∞ > R.

Lemma 3.2. — Let

(3.9) w∞ ∈ C, |w∞| = 10r∞.

Then ∣∣∣∣V∞(z)− 1
M

log
∣∣∣∣1− z

w∞

∣∣∣∣∣∣∣∣ 6 C1 η, z 6∈ Ew∞ ,

and

(3.10)
1
M

log
∣∣∣∣1− z

w∞

∣∣∣∣ 6 V∞(z) + C2 η, z ∈ Ew∞ ,

where C1, C2 are constants independent of w∞ and

Ew∞ =
{
z : |z − w∞| <

1
20
|w∞|

}
.

Remarks. — 1. It is clear that Ew∞ ∩QR = ∅ and also that it is possible
to choose two different points w′∞ and w′′∞ satisfying (3.9) so that Ew′∞ ∩
Ew′′∞ = ∅.
2. The values of the constants in this lemma depend upon A.
3. We use the notation a ≺ b to mean a 6 Cb with C a constant inde-
pendent of all parameters except perhaps A and a � b to mean a ≺ b and
b ≺ a.

Step 3. Define

V0(z) :=
∫
QR

log |z − ζ|dµ(ζ).

Given Lemma 3.2, it remains to approximate V0 by a function which has
the form 1

n log |PN (z)|, where PN is a polynomial of degree N . In order to
construct this approximation we need a special partition of QR. Existence
of the desired partitions is ensured by a lemma due to R. Yulmuhametov
[19], see also [10]. We state this result in a form which is adjusted to our
situation. Let µ̂ denote the restriction of µ to QR. We have µ̂(QR) =
(M − 1)/M . Given an integer k we split QR into k(M − 1) pieces each of
measure 1/Mk.
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Lemma A. — Given an integer k > 0, there exists a covering of QR

QR = ∪(k−1)M
l=1 Q(l),

and µ̂,

µ̂ =
(k−1)M∑
l=1

µ(l),

with the following properties:

• Each Q(l) is a rectangle with sides parallel to the coordinate axes
such that the ratio of longest to shortest side does not exceed 3;

• each point in QR belongs to at most four distinct rectangles Q(l);
• supp µ(l) ⊂ Q(l);
•

(3.11) µ(l)(Q(l)) =
1
kM

.

Fix such a partition. We look for a polynomial Pk of degreeN := k(M−1)
of the form

Pk(z) =
N∏
l=1

(z − ζ(l)),

where the choice of the points {ζ(l)}k(M−1)
1 ⊂ QR is related to the partition.

Let d(l) := diam(Q(l)). We then have Area(Q(l)) � d(l)2. In choosing the
points {ζ(l)}k(M−1)

1 , we first observe that, by (3.3) and (3.4), d(l) cannot
be too small:

(3.12) d(l) >
1

3(MA)1/2
1

k1/2
.

We split the set of indices into two subsets:
(3.13)

Ik =
{
l : 1 6 l 6 N, d(l) 6 k1/3 1

3(MA)1/2
1

k1/2

}
, Jk = {1, 2, . . . , N} \ Ik.

We say that Q(l) is a normal rectangle if l ∈ Ik. For such rectangles we set

(3.14) ζ
(l)
0 = kM

∫
Q(l)

ζdµ(l)(ζ),

the center of mass of µ(l) in Q(l), and then take

ζ(l) := ζ
(l)
0 + δ(l) ∈ Q(l)

where δ(l) are any complex numbers satisfying

(3.15) |δ(l)| 6 k−5.
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For l ∈ Jk we let ζ(l) ∈ Q(l) be any points of QR with the property that

|ζ(l) − ζ(m)| > k−5, l,m ∈ Jk, l 6= m.

The choice of ζ(l)’s is related to the integer k and to the corresponding
partition; hence we write

Zk := {ζ(l)}N1 , Ek = {z ∈ C; dist(z, Zk) < k−10}.

Step 4: We approximate the finite potential V0.

Lemma 3.3. — For each η > 0 one can choose k large enough so that

|V0(z)−
1
kM

log |Pk(z)|| < η, z 6∈ Ek; V0(z)+η >
1
kM

log |Pk(z)|, z ∈ Ek.

Together with Lemma 3.2 this statement immediately yields the Claim
since it allows us to choose two polynomials of the form(

1− z

w′∞

)k
Pk(z) and

(
1− z

w′′∞

)k
Qk(z)

such that the corresponding exceptional sets are disjoint.
We now give the proofs of lemmas 3.2 and 3.3. We begin with the atom-

ization of the external part of the potential, V∞; i.e., we prove Lemma 3.2.

3.2. Proof of Lemma 3.2

The quantity to be estimated

D∞(z) = V∞(z)− 1
M

log
∣∣∣∣1− z

w∞

∣∣∣∣ ,
admits two representations:

(3.16) D∞(z) =
∫

C\QR

(
log
∣∣∣∣1− z

ζ

∣∣∣∣− log
∣∣∣∣1− z

w∞

∣∣∣∣) dµ(ζ);

and also

(3.17) D∞(z) =
∫

C\QR

(log |z − ζ| − log |z − w∞|)dµ(ζ) +
log 10
M

=
∫

C\QR

log
∣∣∣∣1 +

w∞ − ζ

z − w∞

∣∣∣∣ dµ(ζ) +
log 10
M

.

The term log 10
M does not exceed η log 10 and does not influence our esti-

mates. We consider the following cases:

Case 1: |z| 6 R/2.
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In this case it suffices to use the representation (3.16) and note that for
ζ 6∈ QR,

log 1/2 6 log
∣∣∣∣1− z

ζ

∣∣∣∣ , log
∣∣∣∣1− z

w∞

∣∣∣∣ 6 log 3/2.

Case 2: R/2 6 |z| 6 3|w∞|.
Note that the set Ew∞ is contained in this annulus. We still use the

representation (3.16) and estimate each summand independently. We have∫
C\QR

log
∣∣∣∣1− z

ζ

∣∣∣∣ dµ(ζ)

=

(∫
ζ∈C\QR,|ζ|<4|w∞|

+
∫
|ζ|>4|w∞|

)
log
∣∣∣∣1− z

ζ

∣∣∣∣ dµ(ζ) = S1(z) + S2(z).

We then have

S1(z) =
∫
ζ∈C\QR,|ζ|<4|w∞|

log |z−ζ|dµ(ζ)−
∫
ζ∈C\QR,|ζ|<4|w∞|

log |ζ|dµ(ζ)

= S11(z) + S12.

Note that S12 is independent of z; from (3.5), |S12| ≺ η. In order to estimate
S11(z) we mention that according to (3.3) and (3.5)∫

|z−ζ|<1

log |z − ζ|dµ(ζ) � η;

this is used for (3.10). In the rest of the set {ζ ∈ C \QR, |ζ| < 4|w∞|} we
have

0 < log |z − ζ| < 10 log r∞.

Using (3.8) and (3.6) we have |S11| � η.

When estimating S2(z) it suffices to observe that, since |z|/|ζ| 6 3/4,
the integrand is bounded and then apply (3.6).

Case 3: |z| > 3|w∞|.
We now use (3.17). We have

D∞(z) =

(∫
ζ 6∈QR,|ζ|<2|w∞|

+
∫

2|w∞|<|ζ|<4|z|
+
∫

4|z|<|ζ|

)

log
∣∣∣∣1 +

w∞ − ζ

z − w∞

∣∣∣∣ dµ(ζ) +
log 10
M

= T1(z) + T2(z) + T3(z) +
log 10
M

.

We have |T1| � 1/M since the integrand is bounded. When estimating T2

we observe that the integrand is bounded from above throughout the whole
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region of integration thus it suffices to estimate the integral over the region
|z − ζ| < |z|/5, say, in which the integrand is not bounded from below. In
this domain we have∫

|z−ζ|<|z|/5
log
∣∣∣∣1 +

w∞ − ζ

z − w∞

∣∣∣∣ dµ(ζ) =
∫
|z−ζ|<|z|/5

log |z − ζ|dµ(ζ)

−
∫
|z−ζ|<|z|/5

log |z − w∞|dµ(ζ).

The estimate of the right hand side is similar to that of S1(z). Precisely,
to get an upper bound on

∫
|z−ζ|<|z|/5 log |z − w∞|dµ(ζ), since |z| > 3|w∞|

and |z − ζ| < |z|/5, we have |z − w∞| 6 4|z|/3 and 4|z|/5 6 |ζ| 6 6|z|/5.
Hence∫

|z−ζ|<|z|/5
log |z − w∞|dµ(ζ) 6

∫
|z−ζ|<|z|/5

log(4|z|/3)dµ(ζ)

6
∫
|z−ζ|<|z|/5

log(5|ζ|/3)dµ(ζ).

From (3.5) and (3.6),
∫
|z−ζ|<|z|/5 log(5|ζ|/3)dµ(ζ) � η. For the other inte-

gral, ∣∣∣ ∫
|z−ζ|<|z|/5

log |z − ζ|dµ(ζ)
∣∣∣ ≺ η

from (3.3) and (3.7).
The estimate of T3 is also straightforward; we use |z − w∞| >

√
2|w∞|

and |ζ| > 12|w∞| to obtain

0 6 T3(z) =
∫
|ζ|>4|z|

log
∣∣∣ z − ζ

z − w∞

∣∣∣dµ(ζ) 6
∫
|ζ|>4|z|

log
5
8
|ζ|
|w∞|

dµ(ζ),

and apply (3.5).

3.3. Proof of Lemma 3.3

We turn to the atomization of the potential V0.
We split the proof into several steps.
a. Write

D0(z) := V0(z)−
1
kM

log |Pk(z)|

=
N∑
l=1

∫
Q(l)

(log |z − ζ| − log |z − ζ(l)|)dµ(l)(ζ)︸ ︷︷ ︸
jl(z)

.
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We will estimate the contributions from jl’s for l ∈ Ik and l ∈ Jk separately.
The general estimate in b. will be used in c.

b. Estimation of jl(z): Assume z 6∈ Q(l).
Then

jl(z) = <
∫
Q(l)

(L(ζ)− L(ζ(l)))dµ(l)(ζ)

with
L(ζ) = log(z − ζ).

Using the Taylor expansion

L(ζ)− L(ζ(l)) = L′(ζ(l))(ζ − ζ(l)) +
∫ ζ

ζ(l)
L′′(s)(ζ − s)ds

= L′(ζ(l))(ζ − ζ
(l)
0 )− L′(ζ(l))δ(l) +

∫ ζ

ζ(l)
L′′(s)(ζ − s)ds

as well as (3.14) and (3.11) we obtain

jl(z) = <
( δ(l)
Mk

1
z − ζ(l)

+
∫
Q(l)

∫ ζ

ζ(l)

ζ − s

(z − s)2
dsdµ(l)(ζ)

)
.

Taking (3.15) into account we obtain

(3.18) |jl(z)| 6
1

Mk6

1
dist(z,Q(l))

+
1
kM

d(l)2

dist(z,Q(l))2
.

c. Contribution from remote normal rectangles.
Consider

(3.19) l ∈ Ik with dist(z,Q(l)) > 3k−1/2.

It follows from the definition of normal rectangle in (3.13) and l ∈ Ik that

|s− z| ≺ k1/3dist(z,Q(l))

for all s ∈ Q(l). Combining this with (3.18), integrating with respect to
Lebesgue measure σ over Q(l), and recalling that Area(Q(l)) � d(l)2, we
obtain

|jl(z)| ≺
k1/3

k5

∫
Q(l)

dσ(s)
|s− z|

+
k2/3

k

∫
Q(l)

dσ(s)
|s− z|2

.

Therefore ∑
l∈Ik, dist(z,Q(l))>3k−1/2

|jl(z)| ≺ k−14/3

∫
|s−z|>3k−1/2,|s|<2R

dσ(s)
|s− z|

+
k2/3

k

∫
|s−z|>3k−1/2,|s|<2R

dσ(s)
|s− z|2

.
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We have, uniformly with respect to z ∈ C:∫
|s−z|>3k−1/2, |s|<R

dσ(z)
|s− z|2

<

∫
1>|s−z|>3k−1/2

dσ(z)
|s− z|2

+4πR2 = O(log k),

k →∞,

and similarly ∫
|s−z|>3k−1/2, |s|<R

dσ(z)
|s− z|

= O(1), k →∞.

Therefore ∑
l∈Ik, dist(z,Q(l))>3k−1/2

|jl(z)| ≺ k−1/3 log k → 0 as k →∞.

Thus choosing k large enough we can make the contribution from the re-
mote normal rectangles; i.e., those satisfying (3.19), arbitrarily small.

d. Contribution from normal rectangles which are close to z.
Set

Bk(z) := {l ∈ Ik : dist(z,Q(l)) < 3k−1/2}.
In this section we estimate ∑

l∈Bk(z)

jl(z).

It follows from the construction that the total number of indices in Bk(z)
is bounded by some constant independent of z and k and also, from the
definition of normal rectangle, that all the rectangles Q(l), l ∈ Bk(z) are
contained in the disk {|ζ − z| 6 Ck−1/6}, C being independent of z and k.
Let ζ(m) be the point nearest to z among all {ζ(l)}l∈Bk(z). We then have,
using (3.3) and (3.4),∑

l∈Bk(z)

|jl(z)| ≺
∫
{|ζ−z|6Ck−1/6}

| log |z − ζ||dσ(ζ)

+ | log |z − ζ(m)||
∫
{|ζ−z|6Ck−1/6}

dσ(ζ).

Assuming now that z 6∈ Ek (i.e., |z − ζ(m)| > k−10) we obtain∑
l∈Bk(z)

|jl(z)| ≺ k−1/3 log k.

Clearly if z ∈ Ek, we get a lower bound:∑
l∈Bk(z)

jl(z) > −Ck−1/3 log k.
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e. Contribution of non-normal rectangles.
Define

Dn(z) :=
∑
l∈Jk

jl(z).

Let
E =

⋃
l∈Jk

Q(l); µ̃ =
∑
l∈Jk

µ(l).

From (3.13), the area of each non-normal rectangle is at least (10MA)−1

k−1/3 and the total area they cover does not exceed 16R2 (since the mul-
tiplicity of the covering is at most 4). Hence we have

(3.20) ]Jk ≺ k1/3.

Therefore
µ̃(QR) ≺ k−2/3.

We first assume that |z| < 2R. Letting ζm denote the point which is the
nearest to z among all ζ(l), l ∈ Jk, we have

|Dn(z)| ≺
∫
QR

| log |z−ζ||dµ̃(ζ)+ | log |z−ζm||
∫
QR

dµ̃(ζ) = A1(z)+A2(z).

Now by (3.3) and (3.4),

|A1(z)| ≺ A

∫
|ζ−z|<k−5

| log |z − ζ||dσ(ζ)

+ log k
∫
|ζ−z|>k−5,ζ∈QR

dµ̃(ζ) ≺ k−2/3 log k.

Assuming z 6∈ Ek (i.e., |z − ζm| > k−10) we have

|A2(z)| ≺ log kµ̃(QR) ≺ k−2/3 log k.

Otherwise we get a one-sided bound. These inequalities complete the esti-
mate of Dn in the case |z| < 2R.

If |z| > 2R we simply have

Dn(z) =
∑
l∈Jk

∫
Q(l)

(
log
∣∣∣∣1− ζ

z

∣∣∣∣− log
∣∣∣∣1− ζ(l)

z

∣∣∣∣) dµl(ζ),
and since the integrands are bounded we obtain

|Dn(z)| ≺ k−2/3, |z| > 2R.

This inequality completes our estimates.
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4. Convergence of the Monge-Ampère measures

We return to C2 with variables (z, w). We use the notation d = ∂ + ∂̄

and dc = i(∂̄ − ∂) where, for a C1 function u,

∂u :=
∂u

∂z
dz +

∂u

∂w
dw, ∂̄u :=

∂u

∂z̄
dz̄ +

∂u

∂w̄
dw̄

so that ddc = 2i∂∂̄. For a C2 function u,

(ddcu)2 = 16
[ ∂2u

∂z∂z̄

∂2u

∂w∂w̄
− ∂2u

∂z∂w̄

∂2u

∂w∂z̄

] i
2
dz ∧ dz̄ ∧ i

2
dw ∧ dw̄

is, up to a positive constant, the determinant of the complex Hessian of u
times the volume form on C2. Thus if u is also psh, (ddcu)2 is a positive
measure which is absolutely continuous with respect to Lebesgue measure.
If u is psh in an open set D and locally bounded there, or, more generally,
if the unbounded locus of u is compactly contained in D, then (ddcu)2 is a
positive measure in D (cf. [2], [9]). We discuss aspects of this last statement
that we need.

A psh function u in D is an usc function u in D which is subharmonic
(or identically −∞) on components of D ∩L for complex affine lines L. In
particular, u is a locally integrable function in D such that
(4.1)

ddcu = 2i
[ ∂2u

∂z∂z̄
dz ∧ dz̄+

∂2u

∂w∂w̄
dw ∧ dw̄+

∂2u

∂z∂w̄
dz ∧ dw̄+

∂2u

∂z̄∂w
dw ∧ dz̄

]
is a positive (1, 1) current (dual to (1, 1) forms); i.e., a (1, 1) form with
distribution coefficients. Thus the derivatives in (4.1) are to be interpreted
in the distribution sense. Here, a (1, 1) current T on a domain D in C2

is positive if T ∧ (iβ ∧ β̄) is a positive distribution for all (1, 0) forms
β = adz + bdw with a, b ∈ C∞0 (D) (smooth functions having compact
support in D). Writing the action of a current T on a test form ψ as
< T,ψ >, this means that

< T, φ(iβ ∧ β̄) >> 0 for all φ ∈ C∞0 (D) with φ > 0.

For a discussion of currents and the general definition of positivity, we refer
the reader to Klimek [13], section 3.3.

Following [2], we now define (ddcv)2 for a psh v in D if v ∈ L∞loc(D) using
the fact that ddcv is a positive (1, 1) current with measure coefficients. First
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note that if v were of class C2, given φ ∈ C∞0 (D), we have∫
D

φ(ddcv)2 = −
∫
D

dφ ∧ dcv ∧ ddcv

= −
∫
D

dv ∧ dcφ ∧ ddcv =
∫
D

vddcφ ∧ ddcv

since all boundary integrals vanish. The applications of Stokes’ theorem
are justified if v is smooth; for arbitrary psh v in D with v ∈ L∞loc(D),
these formal calculations serve as motivation to define (ddcv)2 as a positive
measure (precisely, a positive current of bidegree (2, 2) and hence a positive
measure) via

< (ddcv)2, φ >:=
∫
D

vddcφ ∧ ddcv.

This defines (ddcv)2 as a (2, 2) current (acting on (0, 0) forms; i.e., test func-
tions) since vddcv has measure coefficients. We refer the reader to [2] or [13]
(p. 113) for the verification of positivity of (ddcv)2. Also, the use of Stokes’
theorem is valid and hence, for simplicity, we will write < (ddcv)2, φ > as∫
D
φ(ddcv)2.

Despite the fact that L1
loc(D) might appear to be the natural topology

in which to study psh functions, work of Cegrell and Lelong (cf. [13] sec-
tion 3.8) yields that on, e.g., a ball D, for any psh function v ∈ L∞loc(D),
there always exists a sequence of continuous psh functions {vj} with vj → v

in L1
loc(D) but (ddcvj)2 = 0 for all j. In the locally bounded category,

however, the complex Monge-Ampère operator is continuous under (a.e.)
monotone limits (cf. Bedford-Taylor [3] or Sadullaev [16]). A simpler argu-
ment shows that local uniform convergence of a sequence of locally bounded
psh functions {vj} to v implies weak-* convergence (ddcvj)2 → (ddcv)2: in
case vj , v are smooth, given φ ∈ C∞0 (D),∫

D

φ(ddcvj)2 =
∫
D

vjdd
cvj ∧ ddcφ

=
∫
D

vddcvj ∧ ddcφ+
∫
D

(vj − v)ddcvj ∧ ddcφ.

The first term tends to
∫
D
vddcv ∧ ddcφ =

∫
D
φ(ddcv)2 since ddcvj → ddcv

as positive (1, 1) currents; from the uniform convergence vj → v, the family
{ddcvj} is locally uniformly bounded (cf. [16]) so that the second term goes
to zero. In particular, we obtain the following result.

Proposition 4.1. — Let K ⊂ C2 be a regular, polynomially convex
compact set. Suppose {un} ⊂ L+(C2) converges uniformly to VK on C2.
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Then
(ddcun)2 → (ddcVK)2

weak-* as measures in C2. Thus with K, {ũn} as in Theorem 1.1,

(ddcũn)2 → (ddcVK)2.

The functions {Un} of Theorem 1.1 are not locally bounded, but they
are in the classical Sobolev space W 1,2

loc (C2). Following [2] as before – but
altering the final application of Stokes’ theorem – we note that if v ∈
W 1,2

loc (D) for some domain D, and φ ∈ C∞0 (D), we can formally write∫
D

φ(ddcv)2 = −
∫
D

dφ ∧ dcv ∧ ddcv

= −
∫
D

dv ∧ dcφ ∧ ddcv = −
∫
D

dv ∧ dcv ∧ ddcφ

since all boundary integrals vanish. In this case, these calculations serve as
motivation to define (ddcv)2 as a positive measure for a psh function v in
W 1,2

loc (D) via ∫
D

φ(ddcv)2 := −
∫
D

dv ∧ dcv ∧ ddcφ.

The functions u(z, w) := 1
2 log (|z|2+|w|2) and ũ(z, w)=max[log |z|, log |w|]

are canonical examples of such functions with

(4.2) (ddcu)2 = (ddcũ)2 = (2π)2δ(0,0)

([9], Corollary 6.4). More generally, if f and g are holomorphic functions
near (0, 0), an elementary calculation (cf. [2], p. 15) shows that

(4.3)
(
ddc

1
2

log (|f |2 + |g|2|)
)2

= 0 on {|f |2 + |g|2 > 0}.

Thus if f(0, 0) = g(0, 0) = 0 and (0, 0) is an isolated zero of {f = g = 0},
in a neighborhood of the origin, the Monge-Ampère measures(

ddc max(log |f |, log |g|)
)2
,
(
ddc

1
2

log (|f |2 + |g|2|)
)2

are supported at (0, 0). Indeed, we have
(4.4)(

ddc max(log |f |, log |g|)
)2 =

(
ddc

1
2

log (|f |2 + |g|2|)
)2

= m(2π)2δ(0,0)

near (0, 0) where m is the degree of the mapping (z, w) → (f(z, w), g(z, w))
at (0, 0). For example, taking (z, w) → (z, w2),(

ddc
1
2

log (|z|2 + |w|4|)
)2

= 2(2π)2δ(0,0).
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To see how (4.2) implies (4.4), following [2], p. 16, we observe that with
u(z, w) := 1

2 log (|z|2 + |w|2), the form

ω := dcu ∧ ddcu

restricted to a sphere Sε := {(z, w) : |z|2 + |w|2 = ε2} equals 2ε−3dσε where
dσε is the volume form on Sε. If we write F (z, w) := (f(z, w), g(z, w)) and
v(z, w) := 1

2 log (|f |2 + |g|2|)
)2, then

dcv ∧ ddcv = F ∗ω = F ∗(dcu ∧ ddcu).

Moreover, ∫
F ∗(ε−3dσε) = 2π2m.

Hence ∫
Sε

dcv ∧ ddcv =
∫
F ∗(2ε−3dσε) = 4π2m.

From (4.3), (ddcv)2 is supported at (0, 0) and the second equality in (4.4)
follows. The first follows from Corollary 6.4 of [9].

Thus for our functions

Un(z, w) = max
[ 1
n

log |Pn(z, w)− 1|, 1
n

log |Qn(z, w)− 1|
]
,

the Monge-Ampère measures (ddcUn)2 are supported on the finite point
sets Kn := {(z, w) : Pn(z, w) = Qn(z, w) = 1}, and by the local uniform
convergence of Un → VK off of ∂K = {ρK = 0} (see (2.10)), given ε > 0,
for n > n0(ε),

(4.5) Kn ⊂ (∂K)ε := {(z, w) : |ρK(z, w)| 6 ε}.

From Proposition 3.2 of [5], in C2, convergence of a sequence {vj} of psh
functions in the Sobolev space W 1,2

loc (C2) implies weak-* convergence of
the Monge-Ampère measures {(ddcvj)2}; we will apply this result to prove
Theorem 4.3.

A simple example motivated from the one-variable example in the intro-
duction illustrates the distinction between approximation by {ũn} and by
{Un}.

Example 4.2. — Let K = {(z, w) : |z|, |w| 6 1} be the closed unit
bidisk. Then

VK(z, w) = max[log |z|, log |w|, 0] = max[ρK(z, w), 0]

so we can trivially take Pn(z, w) = zn and Qn(z, w) = wn in Theorem 1.1.
Then ũn = VK for all n while

Un(z, w) = max
[ 1
n

log |zn − 1|, 1
n

log |wn − 1|
]
.
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Thus Kn consists of ordered pairs ζ(n)
jk := (ωjn, ω

k
n), j, k = 1, ..., n where

ωn = exp (2πi/n) is a primitive n−th root of unity. It is standard that

• t → tn − 1 is a Fekete polynomial of degree n for the closed unit
disk in C;

• (ddcVK)2 = dθz × dθw, the standard measure on the torus T :=
{|z| = 1} × {|w| = 1} (of mass (2π)2);

• Un → VK locally uniformly in C2 \K and Un → 0 locally uniformly
in Ko = {ρk < 0}, but {Un} does not converge pointwise on T ;
however,

• (ddcUn)2 = (2π)2

n2

∑n
j,k=1 δζ(n)

jk

→ (ddcVK)2.

The assumption in Theorem 1.1 that K is circled, regular and polynomi-
ally convex implies that K is balanced; i.e., (z, w) ∈ K and λ ∈ C with |λ| 6
1 imply (λz, λw) ∈ K; moreover K = D̄ where D = {(z, w) : φ(z, w) < 1} is
a balanced, pseudoconvex domain determined by φ(z, w) := exp ρK(z, w),
the Minkowski functional of D.

Theorem 4.3. — If K = D̄ with D strictly pseudoconvex, then

(ddcUn)2 → (ddcVK)2

weak-* as measures in C2.

Proof. — We first note that all of the functions Un and VK have the
same total Monge-Ampère mass:

(4.6)
∫

C2
(ddcUn)2 =

∫
C2

(ddcVK)2 = (2π)2.

This is a standard fact about psh functions u ∈ L+(C2); cf. [18].
Using [12], Theorem 4.1.8, we can find a subsequence {Unj

} of {Un} with
Unj

→ U in Lploc(C2) for some psh U for all p ∈ [1,∞). Since Un → VK
locally uniformly on C2 \ {ρK = 0}, estimates (2.6), (2.7) and (2.9) imply
conditions i)-iii) in Theorem 2.2 of [7]; and we conclude that Un → VK
in L1

loc(C2). Hence U = VK and the full sequence {Un} converges; i.e.,
we have, in particular, that Un → VK in both L2

loc(C2) and L1
loc(C2).

From this latter convergence, ∇Un converges weakly (as distributions) to
∇VK . Using Blocki’s result, to show that (ddcUn)2 → (ddcVK)2 weak-* as
measures, it thus suffices to show that ∇Un → ∇VK in L2

loc(C2). Note that
Un, VK ∈W 1,2

loc (C2) (e.g., from [5], Theorem 1.1).
Fix a strictly pseudoconvex domain B = {(z, w) : ψ(z, w) < 0} con-

taining K where ψ is strictly psh. We want to show that ∇Un → ∇VK in
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L2(B). It suffices to show that the norms converge; i.e.,

||∇Un||2 :=
∫
B

|∇Un|2 →
∫
B

|∇VK |2 = ||∇VK ||2.

That is, by standard Hilbert space theory, weak convergence plus conver-
gence of the norms imply convergence in the norm. Note that by the weak
convergence of ∇Un to ∇VK (or simply Fatou’s lemma) we have

(4.7) lim inf
n→∞

||∇Un|| > ||∇VK ||;

we want to show the limit exists and equals ||∇VK ||.
Let Vn := max[Un, 0]. From the proof of the first part of Theorem 1.1

in section 2, Vn → VK uniformly on C2 and hence, from Proposition 4.1,
(ddcVn)2 → (ddcVK)2 weak-* as measures on C2. By an observation of Ce-
grell, Vn → VK in W 1,2

loc (C2). Precisely, if {uj}, u are subharmonic functions
in W 1,2

loc (Rm) and uj → u locally uniformly, then uj → u in W 1,2
loc (Rm). To

see this, we may assume that uj , u are of class C2 and we use the identity
1
2
∆(v2) = v∆v + |∇v|2

for such functions. Take Ω′ ⊂⊂ Ω ⊂⊂ Rm and η ∈ C∞0 (Ω) with 0 6 η 6 1
and η = 1 on Ω̄′. Then∫

Ω′
|∇(uj − u)|2 6

∫
Ω

η|∇(uj − u)|2 =
1
2

∫
Ω

η∆[(uj − u)2]

−
∫

Ω

η(uj − u)∆(uj − u)

6
∣∣∣1
2

∫
Ω

(uj − u)2∆η
∣∣∣+ ∣∣∣ ∫

Ω

η(uj − u)∆(uj − u)
∣∣∣

6 C

∫
Ω

(uj − u)2 +
∣∣∣ ∫

Ω

η(uj − u)∆(uj − u)
∣∣∣

(here C depends on η) which tends to zero as j →∞ since uj → u uniformly
on Ω̄ and ∆uj → ∆u as measures.

We will work in an equivalent L2−norm using a weight function. To
construct this function, we are assuming that K = D̄ with D = {(z, w) :
ρK(z, w) < 0} strictly pseudoconvex; hence exp ρK is strictly psh and we
work on the sub-level sets B = BR := {(z, w) : exp ρK(z, w) < eR} for
R > 0. For each set B we define

ψ(z, w) := exp ρK(z, w)− eR.

The (semi-) norm in our new L2−space is

||∇u||2ψ :=
∫
B

ddcψ ∧ dcu ∧ du.
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If ψ(z) = A1|z|2 + A2 then ||∇u||2ψ = 4A1||∇u||2; in general, due to strict
plurisubharmonicity and smoothness of ψ, we have

c1||∇u|| 6 ||∇u||ψ 6 c2||∇u||

for constants c1, c2 depending only on ψ. The same argument as before
gives a version of (4.7) in our new norm:

(4.8) lim inf
n→∞

||∇Un||ψ > ||∇VK ||ψ.

Now via integration by parts, we get∫
B

ddcψ ∧ dUn ∧ dcUn =
∫
B

(−ψ)(ddcUn)2

modulo boundary integrals ±
∫
∂B

dUn ∧ dcUn ∧ dcψ ±
∫
∂B

ψdcUn ∧ ddcUn.
Since ψ = 0 on ∂B, this last term vanishes. Similarly,∫

B

ddcψ ∧ dVK ∧ dcVK =
∫
B

(−ψ)(ddcVK)2

modulo boundary integrals ±
∫
∂B

dVK ∧dcVK ∧dcψ±
∫
∂B

ψdcVK ∧ddcVK ;
again, this latter term vanishes. Thus we must show that

(4.9)
∫
∂B

dUn ∧ dcUn ∧ dcψ →
∫
∂B

dVK ∧ dcVK ∧ dcψ

and

(4.10)
∫
B

(−ψ)(ddcUn)2 →
∫
B

(−ψ)(ddcVK)2.

Using (4.5), given ε > 0, for n > n0(ε) we have (ddcUn)2 is supported in
(∂K)ε, and

1− 2ε− eR 6 ψ(z, w) 6 1 + 2ε− eR

on this set so that

(2π)2(1− 2ε− eR) 6
∫
B

ψ(ddcUn)2 6 (2π)2(1 + 2ε− eR).

Since (ddcVK)2 is supported on ∂K and, from (4.6), the total Monge-
Ampère mass of VK is (2π)2, we have

∫
B

(−ψ)(ddcVK)2 = (2π)2(eR− 1) so
that ∣∣∣ ∫

B

(−ψ)(ddcUn)2 −
∫
B

(−ψ)(ddcVK)2
∣∣∣ 6 (2π)22ε

for n > n0(ε). This gives (4.10).
To prove (4.9), we observe that for any fixed R > 0, for n sufficiently

large, Un = Vn on ∂B = ∂BR. Thus we may replace Un by Vn in (4.9). Now
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(ddcVn)2 → (ddcVK)2 weak-* and the support of (ddcVn)2 is compactly
contained in B for n large so∫

B

(−ψ)(ddcVn)2 →
∫
B

(−ψ)(ddcVK)2.

Since Vn → VK in W 1,2
loc (C2),∫

B

ddcψ ∧ dVn ∧ dcVn →
∫
B

ddcψ ∧ dVK ∧ dcVK .

Via the previously described integration by parts, (4.9) follows. �

Remark 4.4. — If K is not strictly pseudoconvex, if we can find K̃ = ¯̃D
balanced with D̃ strictly pseudoconvex and with supp(ddcVK)2 ⊂ K̃, the
same argument works using the function ψ̃(z, w) = exp ρK̃(z, w) − eR.
For example, for the bidisk K, supp(ddcVK)2 is the unit torus which is
contained in the ball K̃ = {(z, w) : |z|2 + |w|2 6 2}.

Remark 4.5. — Let Ω be a bounded hyperconvex domain in CN ; i.e.,
there exists a negative psh function ψ in Ω with {z ∈ Ω : ψ(z) 6 −c} ⊂⊂ Ω
for all c > 0. A bounded psh function v belongs to the class E0(Ω) if
limz′→z v(z′) = 0 for all z ∈ ∂Ω and

∫
Ω
(ddcv)N < +∞. Finally, a psh

function v in Ω belongs to the class F(Ω) if there exists a sequence of
functions vj ∈ E0(Ω) with supj

∫
Ω
(ddcvj)N < +∞ which decreases to v

on Ω. A recent result of Cegrell [8] states the following: for a sequence
{un} ⊂ F(Ω), if un → u ∈ F(Ω) in L1

loc(Ω) and if there exists a strictly
psh function v ∈ E0(Ω) such that limn→∞

∫
Ω
v(ddcun)N =

∫
Ω
v(ddcu)N ,

then (ddcun)N converges weak-* to (ddcu)N . The sequence {un} must lie
in F(Ω) in order that certain integration by parts formulae are valid. Note
that functions in E0(Ω) have zero boundary values; moreover, if un ∈ F(Ω)
then lim supz′→z un(z′) = 0 for all z ∈ ∂Ω (cf. [1]). It might appear that
(4.10) would suffice (without (4.9)) to prove Theorem 4.3. However, the
functions Un do not lie in the class F(B) since lim supz′→z Un(z′) 6≡ 0 for
all z ∈ ∂B.

As mentioned in the introduction, from Bishop’s construction, one ob-
tains the following result.

Proposition 4.6. — Let K ⊂ CN be a regular, polynomially convex
compact set. Then there exists a sequence of special polynomial polyhedra
{κn} where κn is the closure of a union of a finite number of connected
components of

Kn := {(z1, ..., zN ) : |Pn,1(z1, ..., zN )| < 1, |Pn,N (z1, ..., zN )| < 1}
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with {Pn,1, ..., Pn,N} polynomials having degree n, such that the extremal
functions {Vκn

} converge uniformly to VK and (ddcVκn
)N → (ddcVK)N

weak-*.

However, it is not known how one can construct full component sets of
the form Kn approximating K as we have in Theorem 1.1 using (1.5) nor
how to construct functions un of the form

un(z1, ..., zN ) := max
[ 1
n

log |P̃n,1(z1, ..., zN )|, ..., 1
n

log |P̃n,N (z1, ..., zN )|
]

for some polynomials P̃n,1, ..., P̃n,N so that, with

Kn := {(z1, ..., zN ) : un(z1, ..., zN ) = −∞}

we have (ddcun)N is supported in Kn as in (1.6) and

• un → VK locally uniformly in CN \K;
• un → VK in L1

loc(CN ); and
• (ddcun)N → (ddcVK)N weak-*.

As a step in this direction, we can achieve a partial result in C2.

Proposition 4.7. — Let K ⊂ C2 be a regular, polynomially convex
compact set. Then there exists a sequence of pairs of polynomials {P̃n, Q̃n}
with deg P̃n = deg Q̃n = n such that the functions

vn(z, w) := max
[ 1
n

log |P̃n(z, w)|, 1
n

log |Q̃n(z, w)|
]

converge to VK in L1
loc(C2 \K) and ρvn → ρK uniformly on C2. In partic-

ular, if K has empty interior (e.g., if K ⊂ R2), then vn → VK in L1
loc(C2).

Proof. — Form the Robin function ρK of VK (see section 2) and con-
struct the regular, polynomially convex, circled set

Kρ := {(z, w) ∈ C2 : ρK(z, w) 6 0}.

Apply Theorem 1.1 to obtain a sequence of pairs {Pn, Qn} of homogeneous
polynomials such that if ε > 0 is given, then

ρK(z, w)− ε 6 max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|
]

6 ρK(z, w)

for all (z, w) ∈ C2 if n > n(ε). Construct

P̃n = TchKPn, Q̃n = TchKQn

where, for a homogeneous polynomial Hn of degree n,

TchKHn := Hn +Hn−1
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with degHn−1 6 n− 1 and ||TchKHn||K 6 ||Hn +Rn−1||K for all polyno-
mials Rn−1 of degree at most n− 1. By Theorem 3.2 of [6],

lim sup
n→∞

||P̃n||1/nK 6 1, lim sup
n→∞

||Q̃n||1/nK 6 1.

Thus, given ε > 0, for n > n(ε) we have

max[||P̃n||K , ||Q̃n||K ] 6 (1 + ε)n

so that the the functions

vn(z, w) := max
[ 1
n

log |P̃n(z, w)|, 1
n

log |Q̃n(z, w)|
]

satisfy
• vn ∈ L(C2);
• given ε > 0, there exist N = N(ε) with vn 6 ε on K for n > N(ε);
• ρvn

→ ρK uniformly on C2.
This last item follows since

ρvn = max
[ 1
n

log |Pn(z, w)|, 1
n

log |Qn(z, w)|
]
.

By Theorem 2.2 of [7], we conclude that vn → VK in L1
loc(C2 \K). �
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