Dans cet article, on démontre quelques théorèmes nouveaux relatifs aux fonctions entières sommes de séries de Dirichlet ; ces résultats sont relatifs, en particulier, aux dérivées de et à une généralisation de la formule de Poisson.
@article{AIF_1966__16_2_209_0, author = {Kamthan, Pawan Kumar}, title = {On entire functions represented by {Dirichlet} series. {IV}}, journal = {Annales de l'Institut Fourier}, pages = {209--223}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, number = {2}, year = {1966}, doi = {10.5802/aif.241}, zbl = {0145.08103}, mrnumber = {37 #1606}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.241/} }
TY - JOUR AU - Kamthan, Pawan Kumar TI - On entire functions represented by Dirichlet series. IV JO - Annales de l'Institut Fourier PY - 1966 SP - 209 EP - 223 VL - 16 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.241/ DO - 10.5802/aif.241 LA - en ID - AIF_1966__16_2_209_0 ER -
%0 Journal Article %A Kamthan, Pawan Kumar %T On entire functions represented by Dirichlet series. IV %J Annales de l'Institut Fourier %D 1966 %P 209-223 %V 16 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.241/ %R 10.5802/aif.241 %G en %F AIF_1966__16_2_209_0
Kamthan, Pawan Kumar. On entire functions represented by Dirichlet series. IV. Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 209-223. doi : 10.5802/aif.241. https://aif.centre-mersenne.org/articles/10.5802/aif.241/
[1] On the maximum modulus and the maximum term of an entire Dirichlet series; Proc. Amer. Math. Soc., 12, (1962), 717-721. | MR | Zbl
,[2] Uber die obere Grenze des Absoluten Betrages einer analytischen Funktion auf Geraden; Math. Zeit., 8, (1920), 237-240. | JFM
,[3] A note on the maximum term and the rank of an entire function represented by Dirichlet series; Math. Student, 31, N° 1-2, (1962), 17-33. | Zbl
,[4] On the maximum term and its rank of an entire function represented by Dirichlet series (II), Raj. Uni, Studies Jour., Phy. Sec. (1962), 1-14.
,[5] A theorem on step function; J. Gakugei, Tokushima Uni., 13, (1962), 43-47. | MR | Zbl
,[6] On entire functions represented by Dirichlet series, Monat. für. Math., 68, (1964), 235-239. | MR | Zbl
,[7] On entire functions represented by Dirichlet series (II); Monat. für. Math., 69, (1965), 146-150. | MR | Zbl
,[8] On entire functions represented by Dirichlet series (III); Monat. für. Math., 69, (1965), 225-229. | MR | Zbl
,[9] On the mean values of an entire function represented by Dirichlet series, Acta Math. Aca., Sci. Hung., 15, Fasc. 1-2, (1964), 133-136. | MR | Zbl
,[10] Dirichlet Series, Rice Instt. Paph., Vol. 31, N° 4, (1944). | MR | Zbl
,[11] On entire functions and their derivatives represented by Dirichlet series; Ganita (Lucknow), 9, (1958), 83-93. | MR | Zbl
,[12] Integral Functions, Chel. Pub., New York, (1949).
,[13] Sur les droites de Borel de certaines fonctions entières; Ann. École Normale, 68, (1951), 65-104. | Numdam | MR | Zbl
,Cité par Sources :